Skip to main content
Log in

Geochemistry and petrogenesis of the Paleoproterozoic ortho-gneisses and granitoids of the Banded Gneissic Complex, central Rajasthan, NW India: Implications for crustal reworking processes

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Granitoids and orthogneisses (~ 1.7 Ga) from the northern part of the Banded Gneissic Complex (BGC-II domain), Aravalli Craton (NW India) are geochemically analyzed to understand the geodynamic condition and crustal evolution processes. The samples are metaluminous to peraluminous (molar A/CNK: 0.74–2.12), and characterized by Eu-anomaly ranging from 0.17 to 1.06, Fe2O3T/(Fe2O3T + MgO) from 0.8 to 0.9 and high magmatic zircon saturation temperature (> 830 °C) which are the features suggestive of A-type granite affinity. Tectonic discrimination diagrams classify the samples as post-collisional extensional A2-type granites. Geochemical characteristics along with trace element ratios [(Y/Nb)N = 0.15 to 4.33 (avg. 0.76), (Th/Nb)N = 4.63 to 255.47 (avg. 63.13), (Th/Ta)N = 1.37 to 9.84 (avg. 8.86), (Ce/Pb)N = 0.05 to 3.05 (avg. 1.43)] indicate that the rocks were derived from a plagioclase-rich and garnet-free crustal source under low-pressure conditions. Further, it is also proposed that tonalite-trondhjemite-granodiorite (TTG) rocks which occur dominantly in southern Rajasthan (BGC-I) are precursors and their partial melting led to the generation of the studied A-type granite samples. The studied samples also bear close geochemical similarity with A-type granites of similar age (~1.7 Ga) near the Sakhun-Ladera region of northern BGC-II. The studied A-type granites are believed to be coeval to similar aged A-type granites of the Khetri and Alwar sub-basins of the North Delhi Fold Belt (NDFB). They are comparable in age and magmatic history to recorded A-type magmatism in North America and parts of the Chinese craton. The large geographical extents of synchronous A-type granites are proposed to be related to the Columbia Supercontinent assembly (ca. 1.7 Ga; post-collisional granites). Thus, based on the studied extensional granites, we surmise that BGC-II was part of the Columbia Supercontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7 
Fig.  8

Similar content being viewed by others

Data availability

The data generated during this study are included in this article as supplementary file.

References

  • Ackerman L, Žák J, Kachlík V, Svojtka M, Tomek F, Santolík V, Sláma J, Trubač J, Strnad L, Vacek F (2022) The diversity of sources of late Archean granites reflects a transition from plume-dominated to plate tectonics in the Superior Province. Can Precam Res 370:106525

    Article  Google Scholar 

  • Ahmad I, Mondal MEA (2016) Do the BGC-I and BGC-II domains of the Aravalli Craton, Northwest India Represent Accreted Terranes? Earth Sci India 9:167–175

    Article  Google Scholar 

  • Ahmad I, Mondal MEA, Satyanarayanan M (2016) Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: implications for provenance, paleoweathering and supercontinent reconstruction. J Asian Earth Sci 126:58–73

    Article  Google Scholar 

  • Ahmad I, Mondal MEA, Bhutani R, Satyanarayanan M (2018) Geochemical evolution of the Mangalwar Complex, Aravalli Craton, NW India: insights from elemental and Nd-isotope geochemistry of the basement gneisses. Geosci Front 9:931–942

    Article  Google Scholar 

  • Ahmad I, Mondal MEA, Satyanarayanan M (2019) Archean TTG magmatism in the Aravalli Craton, NW India: petrogenetic and geodynamic constraints. Soc Earth Sci Ser 8:179–204

    Google Scholar 

  • Ahmad I, Mondal MEA, Rahaman MS, Bhutani R, Satyanarayanan M (2020) Archean granitoids of the Aravalli Craton, northwest India, vol 489. Geological Society, London, pp 215–234

    Google Scholar 

  • Anderson JL (1983) Proterozoic anorogenic granite plutonism of North America. In: Medaris, J.L.G., Byers, C.W., Mickelson, D.M., Shanks, W.C. (Eds.) Proterozoic geology: selected papers from an International Proterozoic Symposium, vol 161. Mem. Geol. Soc. Am., pp 133–154

  • Anderson IC, Frost CD, Frost BR (2003) Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Res 124:243–267

    Article  Google Scholar 

  • Ashwal LD, Demaiffe D, Torsvik T (2002) Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type Arc Origin. J Petrol 43:45–83

    Article  Google Scholar 

  • Bhowmik SK, Dasgupta S (2012) Tectonothermal evolution of the banded gneissic complex in Central Rajasthan, NW India: Present status and correlation. J Asian Earth Sci 49:339–348

    Article  Google Scholar 

  • Biju-Sekhar S, Yokoyama K, Pandit MK, Okudaira T, Yoshida M, Santosh M (2003) Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication: evidence from EPMA chemical ages of zircons. J Asian Earth Sci 22:189–207

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Buick IS, Allen C, Pandit M, Rubatto D, Herman J (2006) The Proterozoic magmatic and metamorphic history of the banded gneissic complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Res 151:119–142

    Article  Google Scholar 

  • Buick IS, Clark C, Rubatto D, Hermann J, Pandit M, Hand M (2010) Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic Belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120:511–528

    Article  Google Scholar 

  • Chaudhri N, Kaur P, Okrusch M, Schimrosczyk A (2003) Characterisation of the Dabla granitoids, North Khetri Copper Belt, Rajasthan, India: evidence of bimodal anorogenic felsic magmatism. Gondwana Res 6:879–895

    Article  Google Scholar 

  • Choudhary A, Gopalan K, Sastry CA (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105:131–140

    Article  Google Scholar 

  • Choudhury RS (2007) Constraining polyphase high-grade metamorphism of the Banded Gneissic Complex, Central Rajasthan. Unpublished M.Sc. Thesis. Indian Institute of Technology, Kharagpur, India

  • Clemens JD, Phillips GN (2020) Granite suites: a problematic concept? Aust J Earth Sci 67:509–523

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite; experimental constraints. Am Miner 71:317–324

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80:189–200

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166

    Article  Google Scholar 

  • Dall’Agnol R, de Oliveira DC (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos 93(3–4):215–233

    Article  Google Scholar 

  • Dasgupta S, Guha D, Sengupta P, Miura H, Ehl J (1997) Pressure-temperature-fluid evolutionary history of the polymetamorphic Sandmata granulite complex, Northwestern India. Precambrian Res 83:267–290

    Article  Google Scholar 

  • Deb M, Thorpe RI (2004) Geochronological constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In: Deb M, Goodfellow WD (eds) Sediment hosted lead–zinc sulphide deposits. Narosa Publishing House, New Delhi, pp 246–263

    Google Scholar 

  • Dharma Rao CV, Santosh M, Purohit R, Wang J, Jiang X, Kusky T (2011) LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian plate. J Asian Earth Sci 42:286–305

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Fareeduddin, Kroner A (1998) Single zircon age constraints on the evolution of the Rajasthan granulites. In: Paliwal BS (ed) The Indian Precambrian. Scientific Publishers, Jodhpur, pp 547–556

    Google Scholar 

  • Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25(7):647–650

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On Ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53

    Article  Google Scholar 

  • Frost CD, Frost BR, Chamberlain KR, Edwards B (1999) Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: a reduced, rapakivi type anorogenic granite. J Petrol 40:1771–1802

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gamaleldien H, Li Z-X, Abu Anbar M, Murphy JB, Evans NJ, Xia X-P (2022) Formation of juvenile continental crust in northern Nubian Shield: new evidence from granitic zircon U-Pb-Hf-O isotopes. Precambrian Res 379:106791

    Article  Google Scholar 

  • Gopalan K, MacDougall JD, Roy AB, Murali AK (1990) Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Res 48:287–297

    Article  Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Article  Google Scholar 

  • Guha DB, Bhattacharya AK (1995) Metamorphic evolution and high-grade reworking of the Sandmata complex granulites. Mem Geol Soc India 31:163–198

    Google Scholar 

  • Gupta BC (1934) The geology of central Mewar. Mem Geol Surv India 65:107–168

    Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqballuddin, Prasad B, Sahai TN, Sharma SB (1980) Lithostratigraphic map of Aravalli Region, Southern Rajasthan and northeastern Gujarat. Geological Survey of India, Hyderabad

    Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Iqbaluddin PB, Sahai TN, Sharma SB (1997) The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Mem Geol Surv India 123:262

    Google Scholar 

  • Hacket CA (1877) Note on Aravalli series in northeastern Rajputana. Rec Geol Surv India 10(2):84–92

    Google Scholar 

  • Hamidullah IS, Mondal MEA, Ahmad I, Dash JK, Rahaman W (2022a) Rift-related multistage evolution of the Mangalwar Complex, Aravalli Craton (NW India): evidence from elemental and Sr–Nd isotopic features of Proterozoic amphibolites. Geol J 57:3199–3229

    Article  Google Scholar 

  • Hamidullah IS, Mondal MEA, Ahmad I, Rahaman W, Dash JK (2022b) Geochemistry and Sr–Nd isotopic studies of Precambrian gneisses from central Aravalli Craton, NW India: implications for crustal evolution and reworking. J Asian Earth Sci X 8:100125

    Google Scholar 

  • Heron AM (1917) Geology of northeastern Rajputana and adjacent districts. Mem Geol Surv India 45:128

    Google Scholar 

  • Heron AM (1953) Geology of Central Rajputana. Mem Geol Surv India 79:389

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Huang M, Cui X, Lin S, Chen J, Ren G, Sun Z, Ren F, Xu Q (2021) The ca. 1.18–1.14 Ga A-type granites in the southwestern Yangtze Block, South China: new evidence for late Mesoproterozoic continental rifting. Precambrian Res 363:106358

    Article  Google Scholar 

  • Hutton DHW, Dempster TJ, Brown PE, Becker SD (1990) A new mechanism of granite emplacement: intrusion into active extensional shear zones. Nature 343:452–455

    Article  Google Scholar 

  • Kärenlampi K et al (2021) Geochemical and thermodynamic modeling of the petrogenesis of A1-type granites and associated intermediate rocks: a case study from the central Fennoscandian Shield. Geochemistry 81(2):125734

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Okrusch M, Koepke J (2006) Paleoproterozoic A-type felsic magmatism in the Khetri Copper Belt, Rajasthan, northwestern India: petrologic and tectonic implications. Miner Petrol 87:81–122

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Raczek I, Kröner A, Hofmann AW (2007) Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Paleoproterozoic A-type granitoids in the northern part of the Delhi Belt, Rajasthan, NW India: implications for late Paleoproterozoic crustal evolution of the Aravalli craton. Geol Mag 144:361–378

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Raczek I, Kröner A, Hofmann AW, Okrusch M (2011) Zircon ages of the late Paleoproterozoic (ca. 1.72–1.70) extension related granitoids in NE Rajasthan, India: regional and tectonic significance. Gondwana Res 19:1040–1053

    Article  Google Scholar 

  • Kaur P, Chaudhri N, Hofmann AW, Raczek I, Okrusch M, Skora S, Baumgartner L (2012) Two-stage, extreme albitization of A-type granites from Rajasthan, NW India. J Petrol 53:919–948

    Article  Google Scholar 

  • Kaur P, Eliyas N, Chaudhri N (2017) Record of post-collisional A-Type magmatism in the Alwar complex, Northern Aravalli Orogen. NW India. Curr Sci 112:608–615

    Article  Google Scholar 

  • Kaur P, Zeh A, Chaudhri N (2021) Archean to Proterozoic (3535–900 Ma) crustal evolution of the central Aravalli Banded Gneissic Complex, NW India: new constraints from zircon U-Pb-Hf isotopes and geochemistry. NW India. Precambrian Research 359:106179

    Article  Google Scholar 

  • Kerr A, Krogh TE, Corfu F, Schärer U, Gandhi SS, Kwok YY (1992) Episodic Early Proterozoic plutonism in the Makkovik province, Labrador: U–Pb geochronological data and geological implications. Can J Earth Sci, 29:1166–1179

    Article  Google Scholar 

  • Ketchum JWF, Barr SM, Culshaw NG, White CE (2001) U–Pb ages of granitoid rocks in the northwestern Makkovik province, Labrador: evidence for 175 million years of episodic synorogenic and post orogenic plutonism. Can J Earth Sci 38:359–372

    Article  Google Scholar 

  • King P, White A, Chappell B, Allen C (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J Petrol 38:371–391

    Article  Google Scholar 

  • Loiselle M, Wones D (1979) Characteristics and origin of anorogenic granites.  In: Geological Society of America Abstracts with Programs, p 468

  • Malvin DJ, Drake MJ (1987) Experimental determination of crystal/melt partitioning of Ga and Ge in the system forsterite-anorthite-diopside. Geochim Cosmochim Acta 51(8):2117–2128

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1-2):1–24 

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McKenzie NR, Hughes NC, Myrow PM, Banerjee DM, Deb M, Planavasky NJ (2013) New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Research 238:12–28

    Article  Google Scholar 

  • Meert JG, Pandit MK (2015) The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Geol Soc Lond Mem 43(1):29–54

    Article  Google Scholar 

  • Mondal MEA, Ahmad I, Rahaman MS, Bhutani R, Ahmad T (2020) An overview of Precambrian geology of Aravalli Craton and Fold Belt, north-western India. Proc Indian Natl Sci Acad 86:67–79

    Article  Google Scholar 

  • Moreno JA, Molina JF, Montero P, Abu Anbar M, Scarrow JH, Cambeses A, Bea F (2014) Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos 192–195:56–85

    Article  Google Scholar 

  • Pandit MK, Khatatneh MK (1998) Geochemical constraints on anorogenic felsic plutonism in North Delhi Fold Belt, western India. Gondwana Res 1:247–255

    Article  Google Scholar 

  • Pandit MK, Khatatneh MK (2003) Alkali exchange as a possible mechanism for genesis of low-K granite: evidence from Ajitgarh Pluton, Proterozoic Delhi Fold Belt, NW India. J Geol Soc India 62:696–707

    Google Scholar 

  • Pandit MK, Kumar H, Wang W (2021) Geochemistry and geochronology of A-type basement granitoids in the north-central Aravalli Craton: implications on Paleoproterozoic geodynamics of NW Indian Block. Geosci Front 12:101084

    Article  Google Scholar 

  • Patino Douce AE (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25:743–746

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transportation and emplacement in the Earth’s crust. Nature 408:669–673

    Article  Google Scholar 

  • Pfänder JA, Münker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium. Earth Planet Sci Lett 254:158–172

    Article  Google Scholar 

  • Rahaman MS, Mondal MEA (2015) Evolution of continental crust of the Aravalli craton, NW India, during the Neoarchaean—Palaeoproterozoic: evidence from geochemistry of granitoids. Int Geol Rev 57:1510–1525

    Article  Google Scholar 

  • Rahaman MS, Mondal MEA, Ahmad I, Bhutani R, Choudhary AK (2019) Geochemical and Nd isotopic studies of the Neoarchaean-Palaeoproterozoic granitoids of the Aravalli Craton, NW India: evidence for heterogeneous crustal evolution processes.  In: Mondal MEA (ed.), Geological Evolution of the Precambrian Indian Shield, pp 327–350

  • Ramiz MM, Mondal MEA, Ahmad I (2020) Neoarchean A-type granite in the Bundelkhand Craton near Kuraicha: implications for crustal reworking. Earth Sci India 13:78–95

    Google Scholar 

  • Ramiz MM, Ahmad I, Mondal MEA, Rahaman W (2022) Multistage Neoarchean magma genesis in the Bundelkhand Craton, India: evidence from whole-rock elemental and Nd isotopic study of mafic magmatic enclaves and granitoids. Geosyst Geoenviron 1:100085

    Article  Google Scholar 

  • Roberts NMW, Van Kranendonk MJ, Parman S, Clift PD (2014) Continent formation through time. Geological Society, London, p 389

    Google Scholar 

  • Roy AB, Kröner A (1996) Single zircon evaporation ages constraining the growth of Archean Aravalli craton, northwestern Indian shield. Geol Mag 133:333–342

    Article  Google Scholar 

  • Roy AB, Jakhar SR (2002) Geology of Rajasthan (Northwest India) Precambrian to recent. Scientific Publishers (India), Jodhpur, p 421

    Google Scholar 

  • Roy AB, Kroner A, Bhattacharya PK, Rathore S (2005) Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geol Mag 142:287–302

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Sarkar G, Barman TR, Corfu F (1989) Timing of continental arc-type magmatism in northwest India: evidence from U-Pb zircon geochronology. J Geol 97:607–612

    Article  Google Scholar 

  • Satyanarayan M, Balaram V, Sawant SS, Subramanyam KSV, Krishna GV, Dasaram B, Manikyamba C (2018) Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by High Resolution Inductively Coupled Plasma Mass Spectrometry. At Spectrosc 39(1):1–15

    Article  Google Scholar 

  • Scoates JS, Frost CD, Mitchell JN, Lindsley DH, Frost BR (1996) Residual-liquid origin for a monzonitic intrusion in a Mid-Proterozoic anorthosite complex: the Sybille intrusion, Laramie anorthosite complex, Wyoming. Geol Soc Am Bull 108:1357–1371

    Article  Google Scholar 

  • Sinha-Roy S (1984) Precambrian crustal interactions in Rajasthan, NW India: crustal evolution of the Indian shield and its bearing on Metallogeny. Indian J Earth Sci Semin 6:84–91

    Google Scholar 

  • Smith DR, Noblett J, Wobus RA, Unruh D, Douglass J, Beane R, Davis C, Goldman S, Kay G, Gustavson B, Saltoung B, Stewart J (1999) Petrology and geochemistry of late-stage intrusions of the A-type, Mid-Proterozoic pikes peak batholith (Central Colorado, USA): implications for petrogenetic models. Precambrian Res 98:271–305

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Tang H, Meng G, Wu Z, Wang Z, Deng Z, Yan J, Qi G, Xue R (2022) Petrogenesis and tectonic implications of A-type granites in Zhaheba in the East Junggar Region of Xinjiang, China: evidence from geochronology, geochemistry and Sr–Nd isotopic compositions. Acta Geol Sin 96:938–953

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Pub

    Google Scholar 

  • Turner SP, Fooden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Article  Google Scholar 

  • Wang XL, Zhou JC, Chen X, Zhang FF, Sun ZM (2017) Formation and evolution of the Jiangnan Orogen. Bull Mineral Petrol Geochem 36(5):714–735

    Google Scholar 

  • Wang W, Cawood P, Pandit M, Xia X, Zhao J-H (2018) Coupled Precambrian crustal evolution and supercontinent cycles: insights from in-situ U–Pb, O– and Hf-isotopes in detrital zircon. NW India. Am J Sci 318:989–1017

    Article  Google Scholar 

  • Wang W, Cawood PA, Pandit MK, Zhou MF, Zhao JH (2019) Evolving passive- and active- margin tectonics of Paleoproterozoic Aravalli Basin. NW India. Geol Soc Am Bull 130:426–443

    Article  Google Scholar 

  • Wang K, Dong SW, Yao WH, Zhang YQ, Li JH, Cui JJ, Han BF (2020a) Xenocrystic/inherited Precambrian zircons entrained within igneous rocks from eastern South China: tracking unexposed ancient crust and implications for late Paleoproterozoic orogenesis. Gondwana Res 84:194–210

    Article  Google Scholar 

  • Wang Y, Yang Y-Z, Siebel W, Zhang H, Zhang Y-S, Chen F (2020b) Geochemistry and tectonic significance of late Paleoproterozoic A-type granites along the southern margin of the North China Craton. Sci Rep 10:86

    Article  Google Scholar 

  • Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas; melting of sodic metatonalites at 0.6–1.2 Ga. Contrib Miner Petrol 154:91–110

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Whalen J, Currie K, Chappell B (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419

    Article  Google Scholar 

  • Wiedenbeck M, Goswami JN (1994) High precision 207Pb/206Pb zircon geochronology using a small ion microprobe. Geochim Cosmochim Acta 58:2135–2141

    Article  Google Scholar 

  • Wiedenbeck M, Goswami JN, Roy AB (1996) Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga: an ion microprobe zircon study. Chem Geol 129:325–340

    Article  Google Scholar 

  • Xie G, Mao J, Li R, Bierlein FP (2008) Geochemistry and Nd–Sr isotopic studies of late Mesozoic granitoids in the southeastern Hubei Province, Middle–Lower Yangtze River belt, Eastern China: petrogenesis and tectonic setting. Lithos 104:216–230

    Article  Google Scholar 

  • Yadav BS, Ahmad T, Kaulina T, Bayanova T, Bhutani R (2020) Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U–Pb ages and geochemical evidences. J Asian Earth Sci 191:104247

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Chairperson, Department of Geology, A.M.U., Aligarh, the Director, CSIR-National Geophysical Research Institute, Hyderabad for extending necessary facilities to take up this work. Part of the research work has been financially supported by the Science and Engineering Research Board (SERB), Government of India, New Delhi, under a Major Research Project (File No. CRG/2019/000088) sanctioned to MEAM. We are thankful to Dr. Binbin Wang (Managing Editor) and an anonymous reviewer for valuable suggestions that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IA, MEAM and ISH designed the study, carried out field and collected samples and generated data. ALTP and IA prepared the first draft of this manuscript. IA and KP revised the manuscript. KP drew/modified the diagrams and proofread the manuscript. All authors agreed and discussed the results and approved the final version of this manuscript.

Corresponding author

Correspondence to M. E. A. Mondal.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Latheef, T.P.A., Mondal, M.E.A. et al. Geochemistry and petrogenesis of the Paleoproterozoic ortho-gneisses and granitoids of the Banded Gneissic Complex, central Rajasthan, NW India: Implications for crustal reworking processes. Acta Geochim 42, 373–386 (2023). https://doi.org/10.1007/s11631-022-00588-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00588-1

Keywords

Navigation