Skip to main content
Log in

Crystallochemical studies on davidite from Bichun, Jaipur District, Rajasthan, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Crystallochemical data on metamict davidite from albitites and albitised rocks from the Bichun area (Jaipur district, Rajasthan, India) of Banded Gneissic Complex (BGC) are provided. Davidite occurs as euhedral, subhedral to anhedral crystals in the form of disseminated grains and also as fracture filled veins. The crystals of davidite are up to 8 cm in length and 6 cm in width. The powder X-ray diffraction (XRD) pattern of the heat-treated davidite (at \(900{^{\circ }}\hbox {C}\)) reveals well-defined reflections of crystallographic planes. The calculated unit-cell parameters of the heat treated davidite are: \(\hbox {a}_{0} = \hbox {b}_{0} = 10.3556 \, \text {\AA }\) and \(\hbox {c}_{0} = 20.9067 \, \text {\AA }\), with unit-cell volume \(\hbox {(V)} = 1941.6385 \, \text {\AA }^{3}\); and \({\upalpha }={\upbeta }= 90^{\circ }\) and \({\upgamma }= 120^{\circ }\), which are in agreement with the values of davidite standard. Geochemical data reveals that the investigated davidite contains 51.5–52.6% \(\hbox {TiO}_{2}\), 14.8–15.1% \(\hbox {Fe}_{2} \hbox {O}_{3}\), 9.8–10.2% FeO, 6.97–7.12% \(\hbox {U}_{3} \hbox {O}_{8}\), 6.72–6.92% \(\hbox {RE}_{2} \hbox {O}_{3}\), 3.85–3.61% \(\hbox {K}_{2}\hbox {O}\), 0.9–1.4% \(\hbox {Al}_{2} \hbox {O}_{3}\), and 0.8–1.2% \(\hbox {SiO}_{2}\). The calculated structural formulae of the two davidite crystals are: D-1: \(\hbox {K}_{0.0044/0.004} \hbox {Ba}_{0.0044/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.053/0.053} \hbox {Mg}_{0.14/0.14} \hbox {Pb}_{0.0076/0.008} \hbox {Fe}_{2.675/2.675} \hbox {Fe}_{1.59/1.59} \hbox {Y}_{0.1175/0.118} \hbox {P}_{0.053/0.053} \hbox {Nb}_{0.008/0.008} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.033/0.033} \hbox {U}_{0.468/0.468} \hbox {Th}_{0.009/0.009} \,\,\hbox {REE}_{0.6829/0.683})_{6.05/6.05} (\hbox {Ti}_{12.15/12.15}\,\, \hbox {Fe}_{1.9022/1.903} \hbox {Si}_{0.372/0.372}\,\, \hbox {Al}_{0.517/0.517}\,\, \hbox {Cr}_{0.018/0.018} \hbox {Co}_{0.009/0.009} \hbox {Ni}_{0.027/0.027})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.319/0.319[]1.681/1.681})_{2/2}\) and D-2: \((\hbox {K}_{0.004/0.004} \hbox {Ba}_{0.005/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.05/0.05} \hbox {Mg}_{0.094/0.094} \hbox {Pb}_{0.007/0.007} \hbox {Fe}_{2.58/2.58} \hbox {Fe}_{1.71/1.71} \hbox {Y}_{0.112/0.112} \hbox {P}_{0.106/0.106} \hbox {Nb}_{0.006/0.006} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.03/0.03} \hbox {U}_{0.48/0.48} \hbox {Th}_{0.009/0.009} \hbox {REE}_{0.665/0.665})_{6.088/6.088} (\hbox {Ti}_{12.48/12.48} \hbox {Fe}_{1.87/1.87} \hbox {Si}_{0.249/0.249} \hbox {Al}_{0.334/0.334} \hbox {Cr}_{0.019/0.019} \hbox {Co}_{0.008/0.008} \hbox {Ni}_{0.04/0.04})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.098/0.098[]1.90/1.90})_{2/2}\). The calculated structural formulae are not fully stoichiometric, which could be due to metamict nature of davidite. The characteristic feature of distribution pattern of REE in davidite is unusually high concentration of LREE and HREE and substantially low content of MREE. It may be due to the occupation of REEs in two distinct crystallographic sites in davidite structure, i.e., M(1) and M(O) sites. Chondrite-normalised plot of davidite reveals a pronounced negative Eu-anomaly (\(\hbox {Eu}/\hbox {Eu}^{*} = 0.30{-}0.39\)), which suggests extremely fractionated nature of the metasomatising fluids from which davidite had crystallized. Metamict davidite-bearing U ores not only from Rajasthan, but also from other parts of India are likely to yield very high U leachability, thereby making them attractive sources of U, which otherwise are ignored by mineral engineers as uneconomic U ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(after Heron 1953; Sinha-Roy et al. 1998).

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boynton W V 1984 Geochemistry of the rare earth elements: Meteorite studies; In: Rare earth element geochemistry: Developments in geochemistry (ed.) Henderson P, Elsevier, Amsterdam, 2 63–114.

  • Cuney M and Kyser K 2008 Recent and not-so-recent developments in uranium deposits and implications for exploration; Mineral. Assoc. Canada, Short Course Series 39 97–113.

    Google Scholar 

  • Dixon P and Wylie A W 1951 An unusual distribution of the lanthanons; Nature 167 526.

    Article  Google Scholar 

  • Ellsworth H V 1932 Rare-earth element minerals of Canada; Can. Geol. Survey, Econ. Geol. Ser. 11.

  • Gaines R V, Skinner H C W, Foord E E, Mason and Rosenzweig A 1997 Dana’s New Mineralogy; 8th edn, John Wiley & Sons, Inc., 1819p.

  • Gatehouse B M, Grey I E and Kelly P R 1979 The crystal structure of davidite; Am. Mineral 64 1010–1017.

    Google Scholar 

  • Heinrich E Wm 1958 Mineralogy and geology of radioactive raw materials; McGraw Hill Book Company Inc., New York, 654p.

    Google Scholar 

  • Heron A M 1953 Geology of Central Rajputana; Geol. Surv. India Memoir 79(1) 1–389.

    Google Scholar 

  • Jain R B, Yadav O P, Rahman M, Thippeswamy S, Fahmi S, Sharma D K and Singh G 1999 Petrography and geochemistry of the radioactive albitites and their genesis, Moanda area, north Rajasthan; J. Geol. Soc. India 53(4) 407–415.

    Google Scholar 

  • Jayalal 2008 Preliminary assessment of pegmatite for rare earth and rare metals in parts of Ajmer, Udaipur, Bhilwara and Pali districts, Rajasthan; Rec. Geol. Surv. India 140 38–39.

  • Latha A, Parihar P S, Shiv Kumar K and Nayak K 2015 Understanding U-mineralisation at Bichun–Nayagaon, Jaipur district, Rajasthan – A petrological approach; J. Appl. Geochem. 17(4) 416–420.

    Google Scholar 

  • Neumann H and Sverdrup T L 1960 Davidite from Tuftan, Iveland; Norsk Geol. Tidsskr. 40 277–288.

    Google Scholar 

  • Pabst A 1961 X-ray crystallography of davidite; Am. Mineral. 46 700–718.

    Google Scholar 

  • Ray S K 1990 The albitite line of northern Rajasthan – A fossil intracontinental rift zone; J. Geol. Soc. India 36 413–423.

    Google Scholar 

  • Shaji T S, Nautiyal K, Yadav G S, Yadav O P, Nanda L K and Maithani P B 2011 Occurrence of metamict davidite, brannerite and uraninite bearing albitite and albitised gneisses in the Banded Gneissic Complex around Bichun and Nayagaon areas, Jaipur district, Rajasthan India; Expl. Res. Atomic Minerals 21 21–26.

    Google Scholar 

  • Singh G, Singh R, Sharma D K, Yadav O P and Jain R B 1998 Uranium and REE potential of the albitite–pyroxenite–microclinite belt of Rajasthan; Expl. Res. Atomic Minerals 11 1–12.

    Google Scholar 

  • Singh Y, Viswanathan R, Parihar P S and Maithani P B 2012 Uranium, multiple oxide, thorium, yttrium and rare earth element mineral occurrences identified by X-ray diffractometry in and around albitite belt of western India: Significance for ore genesis and beneficiation; Gondwana Geol. Mag., Spec. Vol. 13 53–70.

  • Singh Y, Viswanathan R, Parihar P S and Maithani P B 2013 X-ray crystallography of uraninites associated with the albitite belt of western India: Evidence for the high-temperature origin of uranium and associated mineralization; J. Geol. Soc. India 81(1) 79–90.

    Article  Google Scholar 

  • Sinha-Roy S, Malhotra G and Mohanty M 1998 Geology of Rajasthan; Geol. Soc. India, Bangalore, pp. 127–152.

  • Sinha D K, Fahmi S, Bhatt A K, Singh G and Singh R 2000 Evidences for soda metasomatism in Ladera–Sakhum areas, northeastern Rajasthan, India; J. Geol. Soc. India 56 573–582.

    Google Scholar 

  • Yadav O P, Hamilton S, Vimal R, Saxena S K, Pande A K and Gupta K R 2002 Metasomatite and albitite related uranium mineralisation in Rajasthan; Expl. Res. Atomic Minerals 14 109–130.

    Google Scholar 

  • Yadav O P, Saxena S K, Pande A K and Gupta K R 2004 Sodic metasomatism – a feature of tectonomagmatic activation in Khetri sub-basin, Rajasthan, India; Geol. Surv. India, Spec. Publ. 72 301–312.

  • Yang C L 2008 Progressive albitisation in the ‘Migmatite Creek’ region Weekeroo Inlier, Curnamona. Thesis submitted to School of Earth and Environmental Sciences, University of Adelaide.

Download references

Acknowledgements

The authors express their sincere gratitude to the Chemistry Group, AMD, Hyderabad, for analytical support and to Prof. N V Chalapathi Rao and two anonymous reviewers of the journal for their insightful reviews and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamuna Singh.

Additional information

Corresponding editor: N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Saxena, A., Bhatt, A.K. et al. Crystallochemical studies on davidite from Bichun, Jaipur District, Rajasthan, India. J Earth Syst Sci 127, 4 (2018). https://doi.org/10.1007/s12040-017-0905-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0905-0

Keywords

Navigation