Skip to main content
Log in

Static elastic deformation in an orthotropic half-space with rigid boundary model due to non-uniform long strike slip fault

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The solution of static elastic deformation of a homogeneous, orthotropic elastic uniform half-space with rigid boundary due to a non-uniform slip along a vertical strike-slip fault of infinite length and finite width has been studied. The results obtained here are the generalisation of the results for an isotropic medium having rigid boundary in the sense that medium of the present work is orthotropic with rigid boundary which is more realistic than isotropic and the results for an isotropic case can be derived from our results. The variations of displacement with distance from the fault due to various slip profiles have been studied to examine the effect of anisotropy on the deformation. Numerically it has been found that for parabolic slip profile, the displacement in magnitude for isotropic elastic medium is greater than that for an orthotropic elastic half-space, but, in case of linear slip, the displacements in magnitude for an orthotropic medium is greater than that for the isotropic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bonafede M and Rivalta E 1999 The tensile dislocation problem in a layered elastic medium; Geophys. J. Int. 136 341–356.

    Article  Google Scholar 

  • Chinnery M A 1961 The deformation of the ground around surface faults; Bull. Seismol. Soc. Am. 61 355–372.

    Google Scholar 

  • Chinnery M A 1963 The stress changes that accompany strike-slip faulting; Bull. Seismol. Soc. Am. 53 921–932.

    Google Scholar 

  • Crampin S 1989 Suggestions for a consistent terminology for seismic anisotropy; Geophys. Prospect. 37 753–770.

    Article  Google Scholar 

  • Debnath S K and Sen S 2012 Two interacting creeping vertical rectangular strike-slip faults in a viscoelastic half-space model of the lithosphere; IJSER 4(6) 1058–1071.

    Google Scholar 

  • Debnath S K and Sen S 2013 Pattern of stress-strain accumulation due to a long dip-slip fault movement in a viscoelastic layer over a viscoelastic half-space model of the lithosphere–asthenosphere system; Int. J. Appl. Mech. Eng. 18(3) 653–670.

    Article  Google Scholar 

  • Dziewonski A M and Anderson D L 1981 Preliminary reference earth model; Phys. Earth Planet. Int. 25 297–356.

    Article  Google Scholar 

  • Garg N R, Madan D K and Sharma R K 1996 Two-dimensional deformation of an orthotropic elastic medium due to seismic sources; Phys. Earth Planet. Int. 94(1) 43–62.

    Article  Google Scholar 

  • Garg N R, Kumar R, Goel A and Miglani A 2003 Plane strain deformation of an orthotropic elastic medium using an eigen value approach; Earth Planet. Space 55 3–9.

    Article  Google Scholar 

  • Ghosh U, Mukhopadhyay A and Sen S 1992 On two interacting creeping vertical surface-breaking strike-slip faults in a two-layered model of lithosphere; Phys. Earth Planet. Int. 70 119–129.

    Article  Google Scholar 

  • Hess H 1964 Seismic anisotropy of the uppermost mantle under oceans; Nature 203 629–631.

    Article  Google Scholar 

  • Kasahara K 1960 Static and dynamic characteristics of earthquake faults; Bull. Earthq. Res. Inst., University of Tokyo, pp. 74–75.

  • Kasahara K 1964 A strike-slip fault buried in a layered medium; Bull. Earthq. Res. Inst., University of Tokyo 42 609–619.

    Google Scholar 

  • Madan D K, Singh K, Aggarwal R and Gupta A 2005 Displacements and stresses in anisotropic medium due to non-uniform slip along a very long strike-slip fault; ISET J. Earthq. Technol. 42(1) 1–11.

    Google Scholar 

  • Malik M, Singh M and Singh J 2013 Static deformation of a uniform half-space with rigid boundary due to a strike slip line source; IOSR-JM 5 30–41.

    Article  Google Scholar 

  • Maruyama T 1964 Static elastic dislocation in an infinite and semi-infinite medium; Bull. Earthq. Res. Inst., University of Tokyo 42 289–368.

    Google Scholar 

  • Maruyama T 1966 On two-dimensional elastic dislocations in an infinite and semi-infinite medium; Bull. Earthq. Res. Inst., University of Tokyo 44 811–871.

    Google Scholar 

  • Mavko G M 1981 Mechanics of motion on major faults; Ann. Rev. Earth Planet. Sci. 9 81–111.

    Article  Google Scholar 

  • Press F 1965 Displacements, strains and tilts at teleseismic distances; J. Geophys. Res. 70 2395–2412.

    Article  Google Scholar 

  • Ruina A, Katzman Y, Conrad G and Horowitz F G 1986 Some theory and experiments related to frictional behaviour of rocks at low normal stress; Pure Appl. Geophys. 1–82.

  • Rybicki K 1971 The elastic residual field of a very long strike slip fault in the presence of a discontinuity; Bull. Seismol. Soc. Am. 61 79–92.

    Google Scholar 

  • Rybicki K 1973 Static deformation of a multilayered half-space by a very long strike slip fault; Pure Appl. Geophys. 110 1955–1966.

    Article  Google Scholar 

  • Rybicki K 1978 Static deformation of a laterally inhomogeneous half-space by a two-dimensional strike-slip fault; J. Phys. Earth 26 351–366.

    Article  Google Scholar 

  • Rybicki K 1986 Dislocations and their geophysical application; In: Continuum Theories in Solid Earth Physics, Elsevier, Amsterdam, The Netherlands, pp. 18–186.

  • Sahrawat R K, Godara Y and Singh M 2014 Deformation of a uniform half-space with rigid boundary caused by a long inclined strike slip fault of finite width; IOSR-JM 10(3) 100–108

    Article  Google Scholar 

  • Satake K 1994 Mechanism of the 1992 Nicaragua Tsunami earthquake; Geophys. Res. Lett. 21(23) 2519–2522.

    Article  Google Scholar 

  • Savage J C 1980 Dislocations in seismology in dislocations in solids; In: Moving Dislocations (ed.) F R N Nabarro, North-Holland, Amsterdam, The Netherlands, 3 251–339.

  • Sen S, Sarker S and Mukhopadhyay A 1993 A creeping and surface breaking long strike-slip fault inclined to the vertical in a viscoelastic half-space; Mausam 44 365–4, 372–4.

    Google Scholar 

  • Sen S and Debnath S K 2012 A creeping vertical strike-slip fault of finite length in a viscoelastic half-space model of the lithosphere; Int. J. Comput. 2(3) 687–697.

    Google Scholar 

  • Singh S J, Punia M and Rani S 1994 Crustal deformation due to non-uniform slip along a long fault; Geophys. J. Int. 118 411–427

    Article  Google Scholar 

  • Singh J, Malik M and Singh M 2011 Deformation of a uniform half-space with rigid boundary due to long tensile fault; ISET J. Earthq. Technol. 48 1–11.

    Google Scholar 

  • Starr A T 1928 Slip in a crystal and rupture in a solid due to shear; Proc. Cambridge Philosophical Soc. 24 489–500.

    Article  Google Scholar 

  • Steketee J A 1958a On Volterra’s dislocations in a semi-infinite elastic medium; Can. J. Phys. 36 192–205.

    Article  Google Scholar 

  • Steketee J A 1958b Some geophysical applications of the elasticity theory of dislocations; Can. J. Phys. 36 1168–1198.

    Article  Google Scholar 

  • Wang R and Wu H L 1983 Displacement and stress fields due to a non-uniform slip along a strike slip fault; Pure Appl. Geophys. 121 601–609.

    Article  Google Scholar 

  • Yang M and Toksöz M N 1981 Time dependent deformation and stress relation after strike-slip earthquakes; J. Geophys. Res. 86(B4) 2889–2901.

    Article  Google Scholar 

Download references

Acknowledgements

Yogita Godara (SRF) is grateful to the Council of Scientific and Industrial Research, New Delhi for the financial support. Authors thank the referees for their useful suggestions which led to an improvement in the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogita Godara.

Additional information

Corresponding editor: Pawan Dewangan

Appendices

Appendix 1

For the single couple (12)

$$\begin{aligned} A_0 =\frac{F_{12}}{2\pi c\alpha }, \quad B_0 =0 . \end{aligned}$$

For the single couple (13)

$$\begin{aligned} A_0 =0, \quad B_0 =\pm \frac{F_{13}}{2\pi c}, \end{aligned}$$

where the upper sign is for \(x_3 >y_3 \) and the lower sign is for \(x_3 <y_3 \).

Appendix 2

Stresses in case of uniform slip

$$\begin{aligned} P_{12}= & {} \frac{c\alpha ^{3}b_0}{2\pi } \left[ {\frac{L-x_3}{A^{2}}-\frac{L+x_3}{B^{2}}+\frac{2x_3}{C^{2}}} \right] ,\\ P_{13}= & {} \frac{c\alpha b_0}{2\pi } \left[ {\frac{x_2}{A^{2}}+\frac{x_2}{B^{2}}-\frac{2x_3}{C^{2}}} \right] . \end{aligned}$$

Stresses in case of parabolic slip

$$\begin{aligned} P_{12}= & {} -\frac{c\alpha b_0}{2\pi L}\left[ \frac{2x_2}{\alpha L}\left\{ \tan ^{-1}\frac{\alpha \left( {L-x_3} \right) }{x_2}\right. \right. \\&\left. \left. -\tan ^{-1}\frac{\alpha \left( {L+x_3} \right) }{x_2} +2\tan ^{-1}\frac{\alpha x_3}{x_2} \right\} \right. \\&\left. -\alpha \left( {L-\frac{x_3^{2}}{L}+\frac{x_2^{2}}{\alpha ^{2}L}} \right) \left\{ \frac{\alpha (L-x_{3})}{A^{2}}\right. \right. \\&\left. \left. -\frac{\alpha (L+x_{3})}{B^{2}}\right. \right. \left. \left. +\frac{2\alpha x_{3}}{C^{2}} \right\} -\frac{2x_3}{L}\mathrm{log}\left( {\frac{AB}{C^{2}}} \right) \right. \\&\left. -\frac{2x_2^{2} x_3}{L}\left\{ {\frac{1}{A^{2}}+\frac{1}{B^{2}}-\frac{2}{C^{2}}} \right\} \right] \\ P_{13}= & {} \frac{cb_0}{2\pi \alpha L}\left[ \frac{2\alpha x_3}{L}\left\{ \tan ^{-1}\frac{\alpha \left( {L-x_3} \right) }{x_2}\right. \right. \\&\left. \left. -\tan ^{-1}\frac{\alpha \left( {L+x_3} \right) }{x_2}\right. \right. \left. \left. +2\tan ^{-1}\frac{\alpha x_3}{x_2} \right\} \right. \\&\left. +\alpha ^{2}x_2 \left( {L-\frac{x_3^{2}}{L}+\frac{x_2^{2}}{\alpha ^{2}L}} \right) \left\{ {\frac{1}{A^{2}}+\frac{1}{B^{2}}-\frac{2}{C^{2}}} \right\} \right. \\&\left. +\frac{2x_2}{L}\mathrm{log}\left( {\frac{AB}{C^{2}}} \right) \right. -\frac{2\alpha ^{2}x_2 x_3}{L}\\&\left. \times \left\{ {\frac{L-x_3}{A^{2}}-\frac{L+x_3}{B^{2}}+\frac{2x_3}{C^{2}}} \right\} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godara, Y., Sahrawat, R.K. & Singh, M. Static elastic deformation in an orthotropic half-space with rigid boundary model due to non-uniform long strike slip fault. J Earth Syst Sci 126, 97 (2017). https://doi.org/10.1007/s12040-017-0862-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-017-0862-7

Keywords

Navigation