Skip to main content

Advertisement

Log in

Sensitivity of meteorological input and soil properties in simulating aerosols (dust, PM10, and BC) using CHIMERE chemistry transport model

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the ability of a European chemistry transport model, ‘CHIMERE’ driven by the US meteorological model MM5, in simulating aerosol concentrations [dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alfaro S C, Gaudichet A, Gomes L, and Maille M 1997 Modeling the size distribution of a soil aerosol produced by sandblasting; J. Geophys. Res. 102 (D10) 11239–11249, doi: 10.1029/97JD00403..

    Article  Google Scholar 

  • Alfaro S C, Gaudichet A, Gomes L, and Maillé M 1998 Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies; Geophys. Res. Lett. 25 991–994.

    Article  Google Scholar 

  • Alfaro S C and Gomes L 2001 Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas; J. Geophys. Res. 106 18,075–18,084.

    Article  Google Scholar 

  • Andreae M O 1995 Climatic effects of changing atmospheric aerosol levels. In: World Survey of Climatology (ed.) Henderson-Sellers A, vol. 16, Future Climates of the World, Elsevier, New York, pp. 341–392.

  • Baertsch-Ritter N, Keller J, Dommen J, and Prevot A S H 2004 Effects of various meteorological conditions and spatial emissionresolutions on the ozone concentration and ROG/NOx limitation in the Milan area (I); Atmos. Chem. Phys. 4 423–438. http://www.atmos-chem-phys.net/4/423/2004/ http://www.atmos-chem-phys.net/4/423/2004/.

    Article  Google Scholar 

  • Basart S, Dulac F, Baldasano J M, Nabat P, Mallet M, Roblou L, Solmon F, Laurent B, Vincent J, Menut L, El Amraoui L, Sic B, Chaboureau J -P, Leon J -F, Vogel B, Renard J -B, Ravetta F, Pelon J, Di Biagio C, Formenti P, Chiapello I, Roujean J -L, Ceamanos X, Carrer D, Sicard M, Delbarre H, and Attie J-L 2014 Dust Model Intercomparison for Summer 2012, In: The Western Mediterranean and Comparison to The Pre-ChArMEx/TRAQA Campaign Observations, EGU Vienna.

  • Bessagnet B, Hodzic A, Vautard R, Beekman M, Cheinet S, Honer’e C, Liousse C, and Rouil L 2004 Aerosol modeling with CHIMERE – preliminary evaluation at the continental scale; Atmos. Environ. 38 2803–2817.

    Article  Google Scholar 

  • Blond N, Boersma K F, Eskes H J, van der A R J, Van Roozendael M, De Smedt I, Bergametti G, and Vautard R 2007 Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over western Europe; J. Geophys. Res. Atmos. 112, doi: 10.1029/2006JD007277g.

  • Borrego C et al. 2009 Contribution of residential wood combustion to PM10 levels in Portugal; Atmos. Environ., doi: 10.1016/j.atmosenv.2009.11.020.

    Google Scholar 

  • Bouet C, Cautenet G, Washington R, Todd M C, Laurent B, Marticorena B, and Bergametti G 2007 Mesoscale modeling of aeolian dust emission during the BoDEx 2005 experiment; Geophys. Res. Lett. 34 L07812, doi: 10.1029/2006GL029184.

    Article  Google Scholar 

  • Carvalho A C, Carvalho A, Gelpi I, Barreiro M, Borrego C, Miranda A I, and Pérez-Muñuzuri V 2006 Influence of topography and land use on pollutants dispersion in the Atlantic coast of Iberian peninsula; Atmos. Environ. 40 3969–3982.

    Article  Google Scholar 

  • Charlson R J, Langner J, Rodhe H, Leovy C B, and Warren S G 1991 Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulphate aerosols; Tellus 43AB 152–163.

    Google Scholar 

  • Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley Jr J A, Hansen J E, and Hoffman D J 1992 Climate forcing by anthropogenic aerosols; Science 255 423–430.

    Article  Google Scholar 

  • CHIMERE Model documentation 2008 Documentation of the chemistry-transport model [version chimere2008].

  • Chinmay Jena, Ghude S D, Beig G, Blond N, Chate D M, and R J van der A 2013 Estimation of nitrogen oxides lifetime over India using SCIAMACHY observations; Int. J. Remote Sens. Lett. 35 1244–1252.

    Google Scholar 

  • Christopher S A, Wang J, Ji Q, et al. 2003 Estimation of diurnal short wave dust aerosol radiative forcing during PRIDE; J. Geophys. Res. 108(D19), art. no. 8596.

  • Clarke R W, Catalano P J, Koutrakis P, Murthy K G G, Sioutas C, Paulauskis J, Coull B, Ferguson S, and Godleski J J 1999 Urban air particulate inhalation alters pulmonary function and induces pulmonary inflammation in a rodent model of chronic bronchitis; Inh. Tox. 11 (8) 637–656.

    Article  Google Scholar 

  • Colella P and Woodward P R 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations; J. Comput. Phys. 11 38–39.

    Google Scholar 

  • d’Almeida G A 1986 A model for Saharan dust transport; J. Clim. Appl. Meteorol. 25 903–916.

    Article  Google Scholar 

  • De Meij A, Krol M, Dentener F, Vignati E, Cuvelier C, and Thunis P 2006 The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions; Atmos. Chem. Phys. 6 4287–4309.

    Article  Google Scholar 

  • De Meij A, Gzella A, Cuvelier C, Thunis P, Bessagnet B, Vinuesa J F, Menut L, and Kelder H M 2009 The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations; Atmos. Chem. Phys. 9 6611–6632.

    Article  Google Scholar 

  • Debry Edouard and Malherbe Laure (eds) 2012 EC4MACS, Uncertainty Treatment: the CHIMERE -Atmospheric Model, European Consortium for Modelling of Air Pollution and Climate Strategies - EC4MACS Issued by: INERIS, March 2012.

  • Dey S, Tripathi S N, Singh R P, and Holben B N 2004 Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin; J. Geophys. Res. 109 D2021, doi: 10.1029/2004JD004924..

    Article  Google Scholar 

  • Dockery D W, Pope I. C A, Xu X, Spengler J D, Ware J H, Fay M E, Ferris Jr B G, and Speizer F E 1993 An association between air pollution and mortality in six US cities; New Eng. J. Med. 329 1753–1759.

    Article  Google Scholar 

  • Easter R C and Peters L K 1994 Binary homogeneous nucleation: Temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere; J. Appl. Meteorol. 33 775–784.

    Article  Google Scholar 

  • Fecan F, Marticorena B, and Bergametti G 1999 Parameterization of the increase of aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas; Ann. Geophys. 17 149–157.

    Article  Google Scholar 

  • Gelbard F and Seinfeld J H 1980 Simulation of multicomponent aerosol dynamics; J. Colloid Interface Sci. 78 485–501.

    Article  Google Scholar 

  • Gillette D A, Blifford I H, and Fryrear D W 1974 The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils; J. Geophys Res. 79 4068–4075.

    Article  Google Scholar 

  • Gillette D 1978 Wind tunnel simulation of erosion of soil: Effect of soil texture, sandblasting, wind speed and soil consolidation on dust production; Atmos. Environ. 12 1735–1743.

    Article  Google Scholar 

  • Ginoux P, Prospero J M, Torres O, and Chin M 2004 Long-term simulation of dust distribution with the GOCART model: Correlation with the North Atlantic oscillation; Environmental Modeling and Software 19 113–128.

    Article  Google Scholar 

  • Grini A, Tulet P, and Gomes L 2006 Dusty weather forecasts using the MesoNH mesoscale atmospheric model; J. Geophys. Res. 111 D19205, doi: 10.1029/2005JD007007.

    Article  Google Scholar 

  • Gu Jinxia, Zhipeng Bai, Aixia Liu, Wu Liping, Yiyang Xie, Weifang Li, Haiyan Dong, and Xuan Zhang 2010 Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China; Aerosol and Air Quality Research 10 167–176.

    Google Scholar 

  • Hamonou E, Chazette P, Balis D, Dulac F, Schneider X, Galani E, Ancellet E, and Papayannis A 1999 Characterization of the vertical structure of Saharan dust export to the Mediterranean basin; J. Geophys. Res. 104 22,257–22,270.

    Article  Google Scholar 

  • Haywood J M and Ramaswamy V 1998 Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols; J. Geophys. Res. 103 6043–6058.

    Article  Google Scholar 

  • Haywood J and Boucher O 2000 Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review; Rev. Geophys. 38 (4) 513–543.

    Article  Google Scholar 

  • Hodzic A R, Vautard B B., Lattuati M, and Moreto F 2005 On the quality of long-term urban particulate matter simulation with the CHIMERE model; Atmos. Environ. 39 5851–5864.

    Article  Google Scholar 

  • Hodzic A, Jimenez J, Madronich S, Canagaratna M, DeCarlo P, Kleinman L, and Fast J 2010a Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation; Atmos. Chem. Phys. 10, doi: 10.5194/acp-10-5491-2010.

  • Hodzic A, Jimenez J, Prevot A, Szidat S, Fast J, and Madronich S 2010b Can 3D models explain theobserved fractions of fossil and non-fossil carbon in and near Mexico City? Atmos. Chem. Phys. 10, doi: 10.5194/acp-10-10997-2010.

  • Isabelle Coll, Guido Pirovano, Fanny Lasry, Stefano Alessandrini, Marco Bedogni, Matteo Costa, Veronica Gabusi, Laurent Menut, and Robert Vautard 2007 Developments in Environmental Science, Air Pollution Modeling and Its Application XVIII, Volume 6, Pages 362–373.

  • Jaenicke R 1980 Natural aerosols; Annuals of the NewYork Academy of Science, pp. 317–329.

  • Jaenicke R 1993 Tropospheric aerosols; In: Aerosol–Cloud–Climate Interactions (ed.) Hobbs P V, Academic Press, New York, pp. 1–31.

  • Jickells T D et al. 2005 Global iron connections: Between desert dust, ocean biogeochemistry and climate; Science 308 67–71, doi: 10.1126/science.1105959.

    Article  Google Scholar 

  • Kaufman Y J, Hobbs P V, Kirchhoff V W J H, Artaxo P, Remer L A, Holben B N, King M D, Ward D E, Prins E M, Longo K M, Mattos L F, Nobre C A, Spinhirne J D, Ji Q, Thompson A M, Gleason J F, Christopher S A, and Tsay S C 1998 Smoke, clouds, and radiation–Brazil (SCAR-B) experiment; J. Geophys. Res 103 (D24) 31,783–31,808, doi: 10.1029/98JD02281.

    Article  Google Scholar 

  • Kaufman Y J, Tanr’e D, and Boucher O 2002 A satellite view of aerosols in the climate system; Nature 419 215–223.

    Article  Google Scholar 

  • Legrand M, Plana-Fattori A, and N’doume C 2001 Satellite detection of dust using the IR imagery of Meteosat 1. Infrared difference dust index; J. Geophys. Res. 106 (D16) 18251–18274.

    Article  Google Scholar 

  • Marticorena B and Bergametti G 1995 Modeling the atmospheric dust cycle: 1. Design of a soil derived dust production scheme; J. Geophys. Res, 100 16,415–16,430.

    Article  Google Scholar 

  • Mailler S, Khvorostyanov D, and Menut L 2013 Impact of the vertical emission profiles on background gas-phase pollution simulated from the EMEP emissions over Europe; Atmos. Chem. Phys. 13 5987–5998, doi: 10.5194/acp-13-5987-2013..

    Article  Google Scholar 

  • Menut L, Coll I, and Cautenet S 2005a Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP 2a and 2b; Atmos. Res. –ESCOMPTE Spec. Issue 74 139–159.

    Google Scholar 

  • Menut L, Schmechtig C., and Marticorena B. 2005b Sensitivity of the sandblasting flux calculations to the soil size distribution accuracy; J. Atmos. Oceanic Techinology 22 1875–1884.

    Article  Google Scholar 

  • Menut L, Chiapello I, and Moulin C 2009 Previsibility of mineral dust concentrations: The CHIMERE-DUST forecast during the first AMMA experiment dry season; J. Geophys. Res. – Atmospheres 114 D07202, doi: 10.1029/2008JD010523.

    Google Scholar 

  • Menut L and Bessagnet B 2010 Atmospheric composition forecasting in Europe; Ann. Geophys. 28 61–74.

    Article  Google Scholar 

  • Menut L, Carlos Pérez, Karsten Haustein, Bertrand Bessagnet, Catherine Prigent, and Stéphane Alfaro 2013a Impact of surface roughness and soil texture on mineral dust emission fluxes modeling; J. Geophys. Res. – Atmospheres 118 6505–6520, doi: 10.1002/jgrd.50313.

    Article  Google Scholar 

  • Menut L, Bessagnet B, Khvorostyanov D, Beekmann M, Blond N, Colette A, Coll I, Curc G, Foret G, Hodzic A, Mailler S, Meleux F, Monge J -L, Pison I, Siour G, Turquety S, Valari M, Vautard R, and Vivanco M G 2013b CHIMERE 2013: A model for regional atmospheric composition modeling; Geosci. Model Dev. 6 981– 1028.

  • Middleton N J 1986 Dust storms in the middle east; J. Arid Environ. 10 83–96.

    Google Scholar 

  • Miller R and Tegen I 1998 Climate response to soil dust aerosols; J. Clim. 11 (12) 3247–3267, doi: 10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    Article  Google Scholar 

  • Miller R L, Tegen I, and Perlwitz J 2004 Surface radiative forcing by soil dust aerosols and the hydrologic cycle; J. Geophys. Res. – Atmospheres 109 (D4) , art. no. D04203.

    Google Scholar 

  • Moorthy K K, Beegum S N, Srivastava N, Satheesh S K, Chin M., Blond N., Suresh Babu S, and Singh S 2013 Performance evaluation of chemistry transport models over India; Atmos. Environ. 71 210–225.

    Article  Google Scholar 

  • Moshammer H and Neuberger M 2003 The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children; Atmos. Environ. 37 1737–1744.

    Article  Google Scholar 

  • Myhre G, Grini A, Haywood J M, Stordal F, Chatenet B, Tanre’ D, Sundet J K, and Isaksen I S A 2003 Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign; J. Geophys. Res. 108 (D18) 8579, doi: 10.1029/2002JD002566.

    Article  Google Scholar 

  • Nickovic S, Kallos G, Papadopoulos A, and Kakliagou O 2001 A model for prediction of desert dust cycle in the atmosphere; J. Geophys. Res. 106 113–129.

    Google Scholar 

  • Penner J E, Chuang C C, and Grant K 1998 Climate forcing by carbonaceous and sulfate aerosols; Clim. Dynam. 14 839–851.

    Article  Google Scholar 

  • Prospero J M, Charlson R J, Mohnen B, Jaenicke R, Delany A C, Mayers J, Zoller W, and Rahn K 1983 The atmospheric aerosol system – An overview; Rev. Geophys. Space Phys. 21 1607–1629.

    Article  Google Scholar 

  • Prospero J M et al. 2002 Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product; Rev. Geophys. (1) Art. No. 1002.

  • Pye K 1987 Aeolian Dust and Dust Deposits; Academic Press, London, 334p.

    Google Scholar 

  • Satheesh S K and Ramanathan 2000 Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface; Nature 405 60–63, doi: 10.1038/35011039.

    Article  Google Scholar 

  • Satheesh S K, Deepshikha S, Srinivasan J, and Kaufman Y J 2006 Large dust absorption of infrared radiation over Afro-Asian regions: Evidence for anthropogenic impact; IEEE Geosci. Rem. Sens. Lett. 3 (3) 307–311.

    Article  Google Scholar 

  • Schaap M, Vautard R, Bergstrom R, van Loon M, Bessagnet B, Brandt J, Christensen H, Cuvelier K, Foltescu V, Graff A E J J, Kerschbaumer A, Krol M, Langner J, Roberts P, Rouil L, Stern R, Tarrason L, Thunis P, Vignati E, White L, Wind P, and Builtjes P H J 2007 Evaluation of long-term aerosol simulations from seven air quality models and their ensemble in the EURODELTA study; Atmos. Environ. 41 2083–2097.

    Article  Google Scholar 

  • Schmidt H, Derognat C, Vautard R, and Beekmann M 2001 A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe; Atmos. Environ. 35 (36) 6277–6297.

    Article  Google Scholar 

  • Schwartz J and Dockery D W 1992 Increased mortality in Philadelphia associated with daily air pollution concentrations; Ame. Rev. Res. Dis. 145 600–604.

    Article  Google Scholar 

  • Schwartz S E et al. 1995 Group Report: Connections Between Aerosol Properties and Forcing of Climate.

  • Seinfeld J H and Pandis S N 1997 Atmospheric chemistry and physics: From air pollution to climate change; Wiley-Interscience.

  • Seinfeld J H and Pandis S N 1998 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley, New York.

    Google Scholar 

  • Shao Y 2001 A model for mineral dust erosion; J. Geophys. Res. 106 20,239–20,254.

    Article  Google Scholar 

  • Smirnov A, Holben B N, Slutsker I, Welton E J, and Formenti P 1998 Optical properties of Saharan dust during ACE-2; J. Geophys. Res. 103 28,079–28,092.

    Article  Google Scholar 

  • Sokolik I N, Winker D M, Bergametti G, Gillette D A, Carmichael G, Kaufman Y J, Gomes L, Schuetz L, and Penner J E 2001 Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust; J. Geophys. Res. 106 (D16) 18,015–18,027, doi: 10.1029/2000JD900498.

    Article  Google Scholar 

  • Solazzo E, Bianconi R, Vautard R, Appel K W, Moran M D, Hogrefe C, Bessagnet B, Brandt J, Christensen J H, Chemel C, Coll I, van der Gon H D, Ferreira J, Forkel R, Francis X V, Grell G, Grossi P, Hansen A B, Jerice-vic A, Kraljevic L, Miranda A I, Nopmongcol U, Pirovano G, Prank M, Riccio A, Sartelet K N, Schaap M, Silver J D, Sokhi R S, Vira J, Werhahn J, Wolke R, Yarwood G, Zhang J, Rao S, and Galmarini S 2012 Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII; Atmos. Environ. 53 60–74, doi: 10.1016/j.atmosenv.2012.01.003..

    Article  Google Scholar 

  • Tegen I and Fung I 1994 Modeling of Mineral dust in the atmosphere: Source, transport and optical thickness; J. Geophys. Res. 99 22,897–22,914.

    Article  Google Scholar 

  • Tegen I, Werner M, Harrison S P, and Kohfeld K E 2004 Relative importance of climate and land use in determining present and future global soil dust emission; Geophys. Res. Lett. 31 L05105.

    Google Scholar 

  • Troen I and Mahrt L 1986 A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation; Bound.-Layer Meteorol. 37 129–148.

    Article  Google Scholar 

  • Van Leer B 1979 Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Method; J. Comput. Phys. 32 (1) 101–136, Bibode 1979JCoPh..32..101V. doi: 10.1016/0021-9991(79)90145-1.

    Article  Google Scholar 

  • Van Loon M, Vautard R, Schaap M, Bergstrom R, Bessagnet B, Brandt J, Builtjes P, Christensen J H, Cuvelier K, Graf A, Jonson J, Krol M, Langner J, Roberts P, Rouil L, Stern R, Tarrason L, Thunis P, Vignati E, White L, and Wind P 2007 Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble average; Atmos. Environ. 41 2083–2097.

    Article  Google Scholar 

  • Vautard R, Bessagnet B, Chin M, and Menut L 2005 On the contribution of natural Aeolian sources to particulate matter concentrations in Europe: testing hypotheses with a modelling approach; Atmos. Environ. 39 3291–3303.

    Article  Google Scholar 

  • Vautard R, Maidi M, Menut L, Beekmann M, and Colette A 2007 Boundary layer photochemistry simulated with a two-stream convection scheme; Atmos. Environ. 41 8275–8287.

    Article  Google Scholar 

  • Vinoj V, Satheesh S K, and Krishna Moorthy K 2009 Aerosol characteristics at a continental urban station in southern India; Int. J. Environ. Waste Manag. 4 (1–2) 256–266.

    Article  Google Scholar 

  • Wesely M 1989 Parameterization of surface resistances to gaseous dry deposition in regional scale numerical models; Atmos. Environ. 23 1293–1304.

    Article  Google Scholar 

  • West J J, Pilinis C, Nenes A, and Pandis S N 1998 Marginal direct climate forcing by atmospheric aerosols; Atmos. Environ. 32 2531–2542.

    Article  Google Scholar 

  • White B R 1986 Encyclopedia of fluid mechanics; Gulf Publishing, Houston, TX, USA, pp. 239–282.

  • WHO 1987 Air Quality Guidelines for Europe, WHO Regional Publications, European Series No. 23, WHO Regional Office for Europe, Copenhagen.

  • Zender C, Bian H, and Newman D 2003 Mineral dust entrainment and deposition (dead) model description and 1990s dust climatology; J. Geophys. Res. 108 4416.

    Article  Google Scholar 

  • Zhang Y, Bocquet M, Mallet V, Seigneur C, and Baklanov A 2012 Real-time air quality forecasting, part I: History, techniques, and current status; Atmos. Environ. 60 632–655.

    Article  Google Scholar 

  • Zyryanov D, Foret G, Eremenko M, Beekmann M, Cammas J -P, M D’Isidoro, Elbern H, Flemming J, Friese E, Kioutsioutkis I, Maurizi A, D Melas, Meleux F, Menut L, Moinat P, Peuch V -H, Poupkou A, Razinger M, Schultz M, Stein O, Suttie A M, Valdebenito A, Zerefos C, Dufour G, Bergametti G, and Flaud J -M 2012 3D evaluation of tro-pospheric ozone simulations by an ensemble of regional Chemistry Transport Model; Atmos. Chem. Phys. 12 3219–3240.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Brent Holben, NASA GSFC for providing AERONET data at Kanpur and the site PI & staff for their effort in establishing and maintaining Kanpur AERONET site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishi Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Satheesh, S.K. & Blond, N. Sensitivity of meteorological input and soil properties in simulating aerosols (dust, PM10, and BC) using CHIMERE chemistry transport model. J Earth Syst Sci 123, 1249–1264 (2014). https://doi.org/10.1007/s12040-014-0466-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-014-0466-4

Keywords

Navigation