Skip to main content

Advertisement

Log in

Compositional diversity of near-, far-side transitory zone around Naonobu, Webb and Sinus Successus craters: Inferences from Chandrayaan-1 Moon Mineralogy Mapper (M3) data

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ariskin A A 2007 Parental magmas of lunar troctolites: Genetic problems and estimated original compositions; Geochem. Int. 45(5) 413–427.

    Article  Google Scholar 

  • Besse S, Sunshine J M, Staid M I, Petro N E, Boardman J W, Green R O, Head J W, Isaacson P J, Mustard J F and Pieters C M 2011 Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3); J. Geophys. Res. 116 E00G13.

    Google Scholar 

  • Bhattacharya S, Chauhan P, Rajawat A S and Kiran Kumar A S 2011 Lithological mapping of central part of Mare Moscoviense using Chandrayaan-1 Hyperspectral Imager (HySI) data; ICARUS 212(2) 470–479.

    Article  Google Scholar 

  • Boardman J W 1994 Geometric mixture analysis of imaging spectrometery data; Proc. Int. Geosci. Remote Sens. Symp. 4 2369–2371.

    Google Scholar 

  • Boardman J W and Huntington J H 1996 Mineral mapping with AVIRIS data; In: Summaries of the 6th Annual JPL Airborne Earth Science Workshop (Pasadena, California: JPL Publication) 96 4(1) 9–11.

  • Chang C I, Wu C, Liu W and Ouyang Y 2006 A new growing method for simplex-based endmember extraction algorithm; IEEE Trans. Geosci. Remote Sens. 44(10) 2804–2819.

    Article  Google Scholar 

  • Clark R N 1979 Planetary reflectance measurements in the region of planetary thermal emission; ICARUS 40 94–103.

    Article  Google Scholar 

  • Clark R N, Pieters C M, Green R O, Boardman J W and Petro N E 2011 Thermal removal from near-infrared imaging spectroscopy data of the Moon; J. Geophys. Res. 116 E00G16.

    Google Scholar 

  • Crosta A P and Filho C R S 2000 Hyperspectral remote sensing for mineral mapping: A case-study at Alto Paraiso De Goias, Central Brazil; Rev. Brasil. Geosci. 30(3) 551–554.

    Google Scholar 

  • Crouvi O, Ben-Dor E, Beyth M, Avigad D and Amit R 2006 Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing; Rem. Sens. Environ. 104 103–117.

    Article  Google Scholar 

  • Demidova S I, Nazarov M A, Lorenz C A, Kurat G, Brandstätter F and Ntaflos Th 2007 Chemical composition of lunar meteorites and the lunar crust; Petrology 15(4) 386–407.

    Article  Google Scholar 

  • Dennison P E, Halligan K Q and Roberts D A 2004 A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper; Remote Sens. Environ. 93(3) 359–367.

    Article  Google Scholar 

  • Dhingra D, Pieters C M, Boardman J W, Head III J W, Isaacson P J, Taylor L A and the M3 Team 2011 Theophilus crater: Compositional diversity and geological context of Mg-spinel bearing central peaks; Lunar Planet. Sci. Conf., XLII, abstract 2388.

  • Galvo S G, Formaggio A R, Couto E G and Roberts D A 2008 Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data; J. Photogram. Rem. Sens. 63 259–271.

    Article  Google Scholar 

  • Glotch T D, Lucey P G, Bandfield J L, Greenhagen B T, Thomas I R, Elphic R C, Bowles N, Wyatt M B, Allen C C, Hanna K D and Paige D A 2010 Highly silica compositions on the Moon; Science 329 1510–1513.

    Article  Google Scholar 

  • Goetz A F H, Vane G, Solomon J E and Rock B N 1985 Imaging spectrometry for earth; Rem. Sens. Sci. 228 1147–1153.

    Google Scholar 

  • Hagerty J J, Lawrence D J, Hawke B R, Vaniman D T, Elphic R C and Feldman W C 2006 Refined thorium abundances for lunar red spots: Implications for evolved, non-mare volcanism on the Moon; J. Geophys. Res. 111 E06002.

    Google Scholar 

  • Heinz D C and Chang C 2001 Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery; IEEE Trans. Geosci. Remote Sens. 39(3) 529–545.

    Article  Google Scholar 

  • Hiesinger H and Head-III J W 2006 New views of lunar geosciences: An introduction and overview; Rev. Mineral. Geochem. 60 1–81.

    Article  Google Scholar 

  • Hunt G R and Salisbury J W 1970 Visible and near infrared spectra of minerals and rocks: I. Silicate minerals; Mod. Geol. 1 283–300.

    Google Scholar 

  • Isaacson P J, Pieters C M, Besse S, Clark R N, Head J W, Klima R L, Mustard J F, Petro N E, Staid M I, Sunshine J M, Taylor L A, Thaisen K G and Tompkins S 2011 Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra; J. Geophys. Res. 116 E00G11.

    Google Scholar 

  • Jolliff B L, Loss C F, McCallum I S and Chwartz J M S 1999 Geochemistry, petrology, and cooling history of 14161,7373: A plutonic lunar sample with textural evidence of granitic-fraction separation by silicate-liquid immiscibility; Am. Mineral. 84 821–837.

    Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L and Wieczorek M A 2000 Major lunar crustal terranes: Surface expressions and crust-mantle origins; J. Geophys. Res. 105 4197–4416.

    Article  Google Scholar 

  • Klima R L, Pieters C M, Boardman J W, Green R O, Head-III J W, Isaacson P J, Mustard J F, Nettles J W, Petro N E, Staid M I, Sunshine J M, Taylor L A and Tompkins S 2011 New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3); J. Geophys. Res. 116 E00G06.

    Google Scholar 

  • Korotev R L 2000 The great lunar hotspot and the composition and origin of the Apollo mafic (LKFM) impact-melt breccias; J. Geophys. Res. 105 4317–4345.

    Article  Google Scholar 

  • Kramer G Y, Besse S, Nettles N, Combe J P, Clark R N, Pieters C M, Staid M, Malaret E, Boardman J, Green R O, Head J W and McCord T B 2011a Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper; J. Geophys. Res. 116 E00G04.

    Google Scholar 

  • Kramer G Y, Besse S, Dhingra D, Nettles J W, Klima R L, Garrick-Bethell I, Clark R N, Combe J P, Head III J W, Taylor L A, Pieters C M, Boardman J and McCord T B 2011b M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies; J. Geophys. Res. 116 E00G18.

    Google Scholar 

  • Kruse F A, Lefkoff A B, Boardman J W, Heidebrecht K B, Shapiro A T, Barloon P J and Goetz A F H 1993 The Spectral Image Processing System (SIPS) interactive visualization and analysis of imaging spectrometer data; Remote Sens. Environ. 44 145–163.

    Article  Google Scholar 

  • Lal D, Chauhan P, Shah R D, Bhattacharya S, Ajai and Kiran Kumar A S 2012 Detection of Mg spinel lithologies on central peak of crater Theophilus using Moon Mineralogy Mapper (M3) data from Chandrayaan-1; J. Earth Syst. Sci. 121(3) 847–853.

    Article  Google Scholar 

  • Lawrence D J, Feldman W C, Barraclough B L, Binder A B, Elphic R C, Maurice S, Miller M C and Prettyman T H 2000 Thorium abundances on the lunar surface; J. Geophys. Res. 105(E8) 20,307–20,331.

    Article  Google Scholar 

  • Lucey P, Korotev R L, Gillis J J, Taylor L A, Lawrence D, Elphic R, Feldman B, Hood L L, Hunten D, Mendillo M, Noble S, Papike J J and Reedy R C 2006 Chapter 2. Understanding the lunar surface and space–moon interactions; In: New Views of the Moon, Rev. Mineral. Geochem. 60 83–219.

  • Mustard J F, Li L and He G 1998 Nonlinear spectral mixture modeling of lunar multispectral data: Implications for lateral transport; J. Geophys. Res.-Planets 103 419–425.

    Article  Google Scholar 

  • Mustard J F and Sunshine J M 1999 Spectral analysis for earth science: Investigations using remote sensing data; In: Manual of remote sensing (eds) Rencz A and Ryerson R A, 3rd edn (New York: John Wiley and Sons), 286p.

    Google Scholar 

  • Nowicki S A and Christensen P R 2007 Rock abundance on Mars from the thermal emission spectrometer; J. Geophys. Res. 112 E05007 1–20.

    Google Scholar 

  • Pieters C M, Boardman J, Buratti B, Chatterjee A, Clark R, Glavich T, Green R, Head-III J, Isaacson P, Malaret E, McCord T, Mustard J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L, Tompkins S, Varanasi P and White M 2009 The Moon Mineralogy Mapper (M3) on Chandrayaan-1; Curr. Sci. 96(4) 500–505.

    Google Scholar 

  • Pieters C M, Boardman J, Buratti B, Clark R, Combe J P, Green R, Goswami J N, Head J W, Hicks M, Isaacson P, Klima R, Kramer G, Kumar K, Lundeen S, Malaret E, McCord T B, Mustard J, Nettles J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L A, Thaisen K, Tompkins S and Varanasi P 2010 Identification of a new spinel-rich lunar rock type by the Moon Mineralogy Mapper (M3); 41st Lunar Planet. Sci. Conf., Woodlands, Texas, 1854p.

  • Pieters C M, Besse S, Boardman J, Buratti B, Cheek L, Clark R N, Combe J P, Dhingra D, Goswami J N, Green R O, Head J W, Isaacson P, Klima R, Kramer G, Lundeen S, Malaret E, McCord T, Mustard J, Nettles J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L A, Thaisen K, Tompkins S and Whitten J 2011 Mg-spinel lithology: A new rock type on the lunar farside; J. Geophys. Res. 116 E00G08.

    Google Scholar 

  • Plaza A, Valencia D, Plaza J and Chang C 2006 Parallel implementation of endmember extraction algorithms from hyperspectral data; IEEE Geosci. Remote Sens. Lett. 3(3) 334–338.

    Article  Google Scholar 

  • Pour B A and Hashim M 2011 Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran; J. Asian Earth Sci. 42 1309–1323.

    Article  Google Scholar 

  • Pour B A and Hashim M 2012 Identifying areas of high economic-potential copper mineralization using ASTER data in Urumieh–Dokhtar Volcanic Belt, Iran; Adv. Space Res. 49 753–769.

    Article  Google Scholar 

  • Ramakrishnan D and Kusuma K N 2008 Marine clays and its impact on the rapid urbanization developments: A case study of Mumbai area using EO-1-Hyperion data; In: Hyperspectral remote sensing and spectral signature applications (ed.) Rajendran S (New Delhi: New India Publishing Agency), pp. 53–64.

    Google Scholar 

  • Rogers A D and Christensen P R 2007 Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration; J. Geophys. Res. 112 E01003 1–18.

    Google Scholar 

  • Staid M I, Pieters C M, Boardman J, Head J W, Sunshine J, Taylor L A, Isaacson P, Besse S, Klima R, Kramer G and Dhingra D 2010 Regional and temporal variations in the western mare basalts: New observations from the Moon Mineralogy Mapper; 41st Lunar and Planetary Science Conference.

  • Taylor S R 1982 Planetary science: A lunar perspective; Lunar and Planetary Institute, USA, 481p.

  • Taylor L A, Liu Y, Pieters C M, Tompkins S, Isaacson P J, Cheek L and Thaisen K 2009 Lunar magma ocean crust: Implications of FeO contents in plagioclase; Lunar Planet. Sci. Conf., XL, abstract 1304.

  • Tompkins S, Hawke B R and Pieters C M 1999 Distribution of materials within the crater Tycho: Evidence for large gabbroic bodies in the highlands; Lunar Planet. Sci. Conf. XXX, Houston, TX, LPI.

  • van der Meer F and De Jong S 2006 Imaging spectrometry: Basic principles and prospective applications (The Netherlands: Springer Publishers), 451p.

    Google Scholar 

  • van der Meer F, Yang H and Lang H 2006 Imaging spectrometery and geological applications; In: Imaging spectrometry: Basic principles and perspective applications (The Netherlands: Springer Publishers), pp. 201–218.

    Google Scholar 

  • Vaughan R G, Calvin W M and Taranik J V 2003 SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping; Rem. Sens. Environ. 85 48–63.

    Article  Google Scholar 

  • Wang J and Chang C I 2006 Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis; IEEE Trans. Geosci. Remote Sens. 44(6) 1586–1600.

    Article  Google Scholar 

  • Wieczorek M A, Jolliff B L, Khan A, Pritchard M E, Weiss M P, Williams J G, Hood L L, Righter K, Neal C R, Shearer C K, McCallum I S, Tompkins S, Hawke B R, Peterson C, Gillis J J and Bussey B 2006 Constitution and structure of the Moon; Rev. Mineral. Geochem. 60 221–364.

    Article  Google Scholar 

  • Wieczorek M A and Phillips R J 1998 Potential anomalies on a sphere: Applications to the thickness of the lunar crust; J. Geophys. Res. 103 1715–1724.

    Article  Google Scholar 

  • Xiong H, Shekhar S, Tan P N and Kumar V 2004 Exploiting a support-based upper bound of Pearson’s Correlation Coefficient for efficiently identifying strongly correlated pairs; ACM SIGKDD, Seattle, WA, USA.

  • Yang Z, Farison J and Thompson M 2009 Fully constrained least squares estimation of target quantifications in hyperspectral images; Proc. IPCV, pp. 910–915.

Download references

Acknowledgements

Authors acknowledge NASA Discovery Program, Science Mission Directorate (http://ode.rsl.wustl.edu/moon/) for sharing the M3 data free of cost. DR acknowledges the critical comments from the reviewers that helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharti, R., Ramakrishnan, D. & Singh, K.D. Compositional diversity of near-, far-side transitory zone around Naonobu, Webb and Sinus Successus craters: Inferences from Chandrayaan-1 Moon Mineralogy Mapper (M3) data. J Earth Syst Sci 123, 233–246 (2014). https://doi.org/10.1007/s12040-013-0377-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0377-9

Keywords

Navigation