Skip to main content

Advertisement

Log in

Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Measurements of the number concentration and size distribution of aerosol particles in the size range of 0.5–20 μm diameter were made with an aerodynamic particle sizer at an Arctic site at Ny-Alesund, Svalbard in August–September 2007 during the International Polar Year 2007–2008. Data are analyzed to study the aerosol number concentration–wind speed relationships. The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. Total number concentration of aerosol particles increases with increase in wind speed, the increase being more when winds from open leads over the oceanic sector are reaching the station as compared to when winds from pack ice in other directions are reaching the station. The larger increase with winds from the oceanic sector is attributed to the enhanced bubble-breaking activity and increased entrainment of dimethyl sulphide particles at the sea surface. Although, the increase in total aerosol number concentration associated with the winds from the oceanic sector is spread over the whole range of particle sizes, the increase in coarse mode particles is more prominent than that in the accumulation mode particles. The age of airmass over pack ice is also an important factor to determine the aerosol concentration over the Arctic region. The process of rainout/washout of the aerosol particles due to drizzle/snowfall is an effective sink mechanism in the Arctic environment. The aerosol particle concentration starts decreasing within a few minutes from the start of these events but requires a few hours to restore to the normal background aerosol level after the end of event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Andronache C 2003 Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions; Atmos. Chem. Phys. 3 131–143.

    Article  Google Scholar 

  • Barrie L A and Barrie M L 1990 Chemical components of lower tropospheric aerosols in the high Arctic: Six years of observation; J. Atmos. Chem. 11 211–226.

    Article  Google Scholar 

  • Bigg E K, Leck C and Tranvik L 2004 Particulates of the surface microlayer of open water in the central Arctic Ocean in summer; Marine Chemistry 91 131–141.

    Article  Google Scholar 

  • Blanchard D C 1963 The electrification of the atmosphere by particles from bubbles from the sea; Prog. Oceanogr. 1 73–202.

    Article  Google Scholar 

  • Blanchard D C and Woodcock A H 1957 Bubble formation and modification in the sea and its meteorological significance; Tellus 9 145–158.

    Article  Google Scholar 

  • Browse J, Carslaw K S, Arnold S R, Pringle K and Boucher O 2012 The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol atmos; Chem. Phys. 12 6775–6798.

    Google Scholar 

  • Comiso J C 2002 A rapidly declining perennial sea ice cover in the Arctic; Geophys. Res. Lett. 29 1956, doi: 10.29/2002GRL015650.

    Article  Google Scholar 

  • Covert D S, Kapustin V N, Bates T S and Quinn P K 1996 Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport; J. Geophys. Res. 101 6919–6930.

    Article  Google Scholar 

  • Drake J C 1968 Electrification accompanying the melting of ice crystals; Quart. J. Roy. Meteorol. Soc. 94 176–191.

    Article  Google Scholar 

  • Eleftheriadis K, Vratolis S and Nyeki S 2009 Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Alesund, Svalbard from 1998–2007; Geophys. Res. Lett. 36 L02809, doi: 10.1029/2008GL035741.

    Google Scholar 

  • Eneroth K, Kjellstrom E and Holemen K 2003 A trajectory climatology for Svalbard: Investigating how atmospheric flow patterns influence observed tracer concentrations; Phys. Chem. Earth, Parts A/B/C 28 1191–1203.

    Article  Google Scholar 

  • Engvall A C, Krejci R, Storm J, Treffeisen R, Scheele R, Hermansen O and Paatero J 2008 Changes in aerosol properties during spring–summer period in the Arctic troposphere; Atmos. Chem. Phys. 8 445–462.

    Article  Google Scholar 

  • Ferek R J, Hobbs P V, Radke L F, Herring J A, Sturges W T and Cota G F 1995 Dimethyl sulfide in the Arctic atmosphere; J. Geophys. Res. 100(D12) 26,093–26,104.

    Article  Google Scholar 

  • Garrett T J, Brattström Sara, Sharma Sangeeta, Douglas, Worthy E J and Novelli Paul 2011 The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic; Geophys. Res. Lett. 38 L16805, doi: 10.1029/2011GL048221.

    Google Scholar 

  • Hassol S J 2005 Impacts of a Global Arctic - Arctic climate Impact Assessment; ACIA, Cambridge University Press.

  • Heintzenberg J 1980 Particle size distribution and optical properties of Arctic haze; Tellus 32 251–260.

    Article  Google Scholar 

  • Heintzenberg J 1981 The chemical composition of Arctic haze at Ny-Alesund, Spitzbergen; Tellus 33 162– 171.

    Article  Google Scholar 

  • Heintzenberg J 1987 Chemically resolved submicrometric size distribution and external mixing of the Arctic haze aerosols; Tellus 39B 374–382.

    Article  Google Scholar 

  • Heintzenberg J, Covert D C and Van Dingenen R 2000 Size distribution and chemical composition of marine aerosols: A compilation and review; Tellus 52B 1104–1122.

    Article  Google Scholar 

  • Heintzenberg J, Leck C, Birmili, Wehner B, Tjernstorm M and Wiedensohler A 2006 Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2000; Tellus 58B 41–50.

    Article  Google Scholar 

  • Hong Geng, Ji Yeon Ryu, Hae-Jin Jung, Hyeok Chung, Kang-Ho Ahn and Chul-Un Ro 2010 Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard; Environ. Sci. Technol. 44(7) 2348–2353.

    Article  Google Scholar 

  • IPCC: Regional climate projections; In: Climate change 2007: The physical basis, Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007, Cambridge University Press.

  • Kasibhatla P, Chameides W L and St John J 1997 A three dimensional global model investigation of the seasonal variation in the atmospheric burden of anthropogenic sulfate aerosols; J. Geophys. Res. 102 3737–3759.

    Article  Google Scholar 

  • Lannerfors H, Heintzenberg J and Hansson H C 1983 A comprehensive study of physical and chemical parameters of the Arctic summer aerosol: Results from the Swedish expedition Ymer-80; Tellus 35B 40–54.

    Article  Google Scholar 

  • Leck C and Bigg E K 1999 Aerosol production over remote marine areas – A new route; Geophys. Res. Lett. 26 3577–3580.

    Article  Google Scholar 

  • Leck C and Persson C 1996 Seasonal and short-term variability in dimethylsulfide, sulfur dioxide and biogenic sulfur and sea-salt aerosol particles in the article marine boundary layer during summer and autumn; Tellus Ser. B 48 272–299.

    Article  Google Scholar 

  • Leck C, Nilsson E D, Bigg E K and Backlin L 2001 Atmospheric program on the Arctic ocean expedition 1996 (AOE-1996): An overview of scientific goals, experimental approach, and instruments; J. Geophys. Res. 106 32,051–32,067.

    Article  Google Scholar 

  • Leck C, Norman M and Bigg E K 2002 Chemical composition and sources of the high Arctic aerosol relevant for cloud formation; J. Geophys. Res. 107(D12) AAC-1-1–AAC-1-17, doi: 10.1029/2001JD001463.

    Google Scholar 

  • Liss P S and Duce R A 1997 The Sea Surface and Global Change, Cambridge University Press, 520p.

  • Matrai P A, Tranvik L, Leck C and Knulst J C 2008 Are high Arctic surface microlayers a potential source of aerosol organic precursors?; Mar. Chem. 108 109–122.

    Article  Google Scholar 

  • Nilsson E D, Rannik U, Swietlicki E, Leck C, Aalto P P, Zhou J and Norman M 2001 Turbulent aerosol fluxes over the Article Ocean, 2, wind driven sources from the sea; J. Geophys. Res. 106 32,139–32,154.

    Article  Google Scholar 

  • O’Dowd C D and Smith M H 1993 Physiochemical properties of aerosol over the northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production; J. Geophys. Res. 98 1137–1149.

    Article  Google Scholar 

  • O’Dowd C D, Smith M H, Consterdine I E and Lowe J A 1997 Marine aerosol, sea-salt and the marine sulphur cycle: A short review; Atmos. Environ. 31 73–80.

    Article  Google Scholar 

  • O’Dowd C D, Facchini M C, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon Y J and Putaud J P 2004 Biological driven organic contribution to marine aerosol; Nature 431 676–680.

    Article  Google Scholar 

  • Pruppacher H R and Klett J D 2000 Microphysics of clouds and precipitation (London: Kluwer Academic Publishers), 954p.

    Google Scholar 

  • Ricard V, Jaffrezo J L, Kerminen V M, Hillamo R E, Sillanpaa, Ruellan S, Liousse C and Cachier H 2002 Two years of continuous aerosol measurements in northern Finland; J. Geophys. Res. 107 4129, doi: 101029/2001JD000952.

    Article  Google Scholar 

  • Serreze M C, Holland M M and Stroeve J 2007 Perspectives on the Arctic’s shrinking sea-ice cover; Science 315 1533–1536.

    Article  Google Scholar 

  • Sharma S, Lavoué D, Cachier H, Barrie L A and Gong S L 2004 Long-term trends of the black carbon concentrations in the Canadian Arctic; J. Geophys. Res. 109 D15203, doi: 10.1029/2003JD004331.

    Article  Google Scholar 

  • Smith M H, Consterdine I E and Park P M 1989 Atmospheric loading of marine aerosol during a Hebredian cyclone; Quart. J. Roy. Meteorol. Soc. 115 383–395.

    Article  Google Scholar 

  • Stohl A 2006 Characteristics of atmospheric transport into the Arctic troposphere; J. Geophys. Res. 111 D11306, doi: 10.1029/2006JD007216.

    Article  Google Scholar 

  • Strom J, Umegard, Torseth K, Tunved P, Hansson H-C, Holmen K, Wismann V, Herber A and Konig-Langlo 2003 One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin station, Svalbard, March 2000–2001; Phys. Chem. Earth, Parts A/B/C 28 1180–1190.

    Article  Google Scholar 

  • Teinila K, Hillamo R, Kerminen V M and Beine H J 2003 Aerosol chemistry during the NICE dark and light campaigns; Atmos. Environ. 37 563–575.

    Article  Google Scholar 

  • Tomasi C, Vitale V, Lupi A, Carmine C Di, Campanelli M, Herber A, Treffeisen R, Stone R S, Andrews E, Sharma S, Radionov V, von Hoyningen-Huene W, Stebel K, Hansen G H, Myhre C L, Wehrli C, Aaltonen V, Lihavainen H, Virkkula A, Hillamo R, Ström J, Toledano C, Cachorro V E, Ortiz P, de Frutos A M, Blindheim S, Frioud M, Gausa M, Zielinski T, Petelski T and Yamanouchi T 2007 Aerosols in polar regions: A historical overview based on optical depth and in situ observations; J. Geophys. Res. 112 D16205, doi: 10.1029/2007JD008432.

    Article  Google Scholar 

  • Tomasi C, Lupi Angelo, Mazzola Mauro, Stone Robert S, Dutton Ellsworth G, Herber Andreas, Radionov Vladimir F, Holben Brent N, Sorokin Mikhail G, Sakerin Sergey M, Terpugova Svetlana A, Sobolewski Piotr S, Lanconelli Christian, Petkov Boyan H, Busetto Maurizio and Vito 2012 Vitale a An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year; Atmos. Environ. 52 29–47.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Director, Indian Institute of Tropical Meteorology, Pune and National Centre for Antarctic and Ocean Research, Goa for participation in the first Indian Arctic expedition. The meteorological data provided by the Alfred Wegener Institute (AWI) is thankfully acknowledged. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used in this publication. AKK is thankful for financial support under the INSA Senior Scientist programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C G DESHPANDE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DESHPANDE, C.G., KAMRA, A.K. Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard. J Earth Syst Sci 123, 201–212 (2014). https://doi.org/10.1007/s12040-013-0373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0373-0

Keywords

Navigation