Skip to main content
Log in

Chondrule-like object from the Indian Ocean cosmic spherules

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Five hundred and eighteen cosmic spherules were identified among the 672 spherules handpicked from deep sea sediments by using Scanning Electron Microscope-Energy Dispersive Spectrometry (SEM-EDS). One of the spherules is found to enclose a spherical chondrule-like object that can be distinguished from the rest of the spherule by its shape, texture and composition and whose petrographic features, size and chemical composition are similar to chondrules from a chondritic meteorite, probably of carbonaceous chondritic nature. The present finding suggests that a small fraction of the particulate extraterrestrial matter enters the earth as fragments of larger meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alexander O’D C M, Taylor S, Delaney J S, Ma P and Herzog G F 2002 Mass-dependent fractionation of Mg, Si and Fe isotopes in five stony micrometeorites; Geochim. Cosmochim. Acta 66 173–183.

    Article  Google Scholar 

  • Beckerling W and Bischoff A 1994 Occurrence and composition of relict minerals in micrometeorites from Greenland and Antarctica – implications for their origins; Planet. Space Sci. 43 435–449.

    Article  Google Scholar 

  • Blanchard M B, Brownlee D E, Brunch T E, Hodge P W and Kyte F T 1980 Meteoroid ablation spheres from deep sea sediments; Earth Planet. Sci. Lett. 46 178–190.

    Article  Google Scholar 

  • Bonte P H, Jehanno C, Maurette M and Brownlee D E 1987 Platinum metal and microstructure in magnetic deep sea cosmic spherules; J. Geophys. Res. 92 641–648.

    Article  Google Scholar 

  • Brownlee D E 1985 Cosmic dust collection and research; Ann. Rev. Earth Planet. Sci. 13 147–173.

    Article  Google Scholar 

  • Brownlee D E, Hodge P W and Bucher W 1973 The physical nature of interplanetary dust as inferred by particle collected at 35 km; NASA SP 319 291–295.

    Google Scholar 

  • Brownlee D E, Tomandl D A and Olszewski E 1977 Interplanetary dust: A new source for extraterrestrial material for laboratory studies; 8th Lunar Planet. Sci. Conf., pp. 149–160.

  • Brownlee D E, Pilachowski L B and Hodge P W 1979 Meteorite mining on the sea floor; Lunar Planet. Sci. 10 157–158.

    Google Scholar 

  • Brownlee D E, Bates B A and Schramm L 1997 Elemental composition of stony cosmic spherules; Meteorit. Planet. Sci. 32 157–175.

    Article  Google Scholar 

  • Brownlee D E, Tsou P, Anderson J D, Hanner M S, Newburn R L, Sekanina Z, Clark B C, Hörz F, Zolensky M E, Kissel J, McDonell J A M, Sandford S A and Tuzzolino A J 2003 Stradust: Comet and interstellar dust sample return mission; J. Geophys. Res. 108 1–15.

    Article  Google Scholar 

  • Brunn A F, Langer E and Pauly H 1955 Magnetic particles found by raking the deep sea bottom; Deep-Sea Res. 2 230–246.

    Article  Google Scholar 

  • Cordier C, Suavet C, Folco L, Rochette P and Sonzongi C 2012 HED-like cosmic spherules from the Transantarctic Mountains, Antarctica: Major and trace element abundances and oxygen isotopic compositions; Geochim. Cosmochim. Acta 77 515–529.

    Article  Google Scholar 

  • Engrand C and Maurette M 1998 Carbonaceous micrometeorites from Antarctica; Meteorit. Planet. Sci. 33 565–580.

    Article  Google Scholar 

  • Esser B K and Turekian K K 1998 Accretion rate of extraterrestrial particles determined from the Osmium isotope systematic of Pacific pelagic clays and manganese nodules; Geochim. Cosmochim. Acta 52 1383–1388.

    Article  Google Scholar 

  • Flynn G N 1989 Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust; Icarus 77 287–310.

    Article  Google Scholar 

  • Fredriksson K and Gowdy R 1963 Meteoritic debris from the Southern California Desert; Geochim. Cosmochim. Acta 27 241–243.

    Article  Google Scholar 

  • Genge M J 2006 Igneous rims on micrometeorites; Geochim. Cosmochim. Acta 70 2603–2621.

    Article  Google Scholar 

  • Genge M J and Grady M M 1988 Melted micrometeorites from Antarctic ice with evidence for separation of immiscible Fe-Ni liquids during entry heating; Meteorit. Planet. Sci. 33 425–434.

    Article  Google Scholar 

  • Genge M J, Grady M M and Hutchison R 1997 The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites; Geochim. Cosmochim. Acta 61 5149–5162.

    Article  Google Scholar 

  • Genge M J, Gileski A and Grady M M 2004 Chondrules in Antarctic micrometeorites; Meteorit. Planet. Sci. 40 225–238.

    Article  Google Scholar 

  • Genge M J, Engrand C, Gounelle M and Taylor S 2008 Classification of micrometeorites; Meteorit. Planet. Sci. 43 497–515.

    Article  Google Scholar 

  • Ginneken V M, Folco L, Cordier C and Rochette P 2011 Chondritic micrometeorites from the Transantarctic Mountain; Meteorit. Planet. Sci. 47 228–247.

    Article  Google Scholar 

  • Greshake A, Hoppe P and Bischoff A 1995 Trace elements abundance in refractory inclusions from Antarctic micrometeorite; Meteoritics 30(5) 513.

    Google Scholar 

  • Greshake A, Klock W, Arndt P, Maetz M, Flynn G, Bajt S and Bischoff A 1997 Heating experiments simulation atmospheric entry heating of micrometeorites: Clue to their parent body sources; Meteorit. Planet. Sci. 33 267–290.

    Article  Google Scholar 

  • Greshake A, Krot A N, Meibom A, Weisberg M K, Zolensky M E and Keil K 2001 Heavily-hydrated lithic clasts in CH chondrites and related metal-rich chondrites Queen Alexandra Range 94411 and Hammadah al Hamra 237; Meteorit. Planet. Sci. 37 281–293.

    Article  Google Scholar 

  • Harvey R P and Maurette M 1991 The origin and significance of the cosmic dust from the Walcott Neve, Antarctica; Proc. Lunar Planet. Sci. 21 569–578.

    Google Scholar 

  • Herzog G F, Xue S, Hall G S, Nyquist L E, Shih C Y, Weismann H and Brownlee D E 1999 Isotopic and elemental composition of Iron, Nickel and Chromium in type I deep sea spherules: Implication for origin and composition of the parent micrometeoroids; Geochim. Cosmochim. Acta 63 1443–1457.

    Article  Google Scholar 

  • Hezel D C, Brenker F E and Palme H 2002 Petrology and cooling history of cryptocrystalline chondrules from CH-chondrites; 33rd Lunar Planet. Sci. Conf., Abstract #1787.

  • Hoppe P 1995 Trace elements and Oxygen isotopes in a CAI bearing micrometeorites from Antarctica; 26th Lunar Planet. Sci. 23 623–624.

    Google Scholar 

  • Ivanova M A, Moroz L V and Kononkova N N 2009 Altered material in CH/CB chondrite Isheyevo; 40th Lunar Planet. Sci. Conf., Abstract #1259.

  • Jull A J T, Lal D, Taylor S, Wieler R, Grimberg A, Vachier L, McHargue L R, Freeman S P H T, Maden C, Schnabel C, Xu S, Finklel R C, Kim K J and Marti K 2007 3He, 20,21,22Ne, 14C, 26Al and 36Cl in magnetic fractions of cosmic dust from Greenland and Antarctica; Meteorit. Planet. Sci. 42 1831–1840.

    Article  Google Scholar 

  • Koeberl C and Hagen E H 1989 Extraterrestrial spherule in glacial sediments from the Transantarctic Mountains, Antarctica: Structure, mineralogy and chemical composition; Geochim. Cosmochim. Acta 53 937–944.

    Article  Google Scholar 

  • Krot A N, Meiborn A and Keil K 2000 Volatile-poor chondrules in CH carbonaceous Chondrites: Formation at high ambient nebular temperature (abstract); 31st Lunar Planet. Sci., Abstract #1481.

  • Krot A N, Meiborn A, Russell S S, Alexander O’D C M, Jeffries T E and Keil K 2001 A new astrophysical settings for chondrule formation; Science 291 1776–1779.

    Article  Google Scholar 

  • Kurat G, Koerberl C, Presper T, Brandstatter E F and Maurette M 1994 Petrology and geochemistry of Antarctic micrometeorites; Geochim. Cosmochim. Acta 58 3879–3904.

    Article  Google Scholar 

  • Kurat G, Hoppe P and Engrand C 1996 A chondrule micrometeorite from Antarctica with vapor-fractionated trace element abundances (abstract); Meteorit. Planet. Sci. 31 75.

    Google Scholar 

  • Lal D and Jull A J 2002 Atmospheric cosmic dust fluxes in the size range 10 − 4 to 10 centimeters; The Astrophysical J. 576 1090–1097.

    Article  Google Scholar 

  • Love S G and Brownlee D E 1991 Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere; Icarus 89 26–43.

    Article  Google Scholar 

  • Love S G and Brownlee D E 1993a Peak atmospheric entry temperature of micrometeorites; Meteorit. Planet. Sci. 26 69–70.

    Google Scholar 

  • Love S G and Brownlee D E 1993b A direct measurement of the terrestrial mass accretion rate of cosmic dust; Science 256 550–553.

    Article  Google Scholar 

  • Marvin U B and Einaudi M T 1967 Black magnetic spherules from Pleistocene and recent beach sands; Geochim. Cosmochim. Acta 31 1871–1884.

    Article  Google Scholar 

  • Maurette M, Hammer C, Brownlee D E and Reeh N 1986 Placers of cosmic dust in blue ice lake Greenland; Science 233 869–872.

    Article  Google Scholar 

  • McSween H Y and Richardson S M 1977 The composition of carbonaceous chondrite matrix; Geochim. Cosmochim. Acta 41 1145–1161.

    Article  Google Scholar 

  • Millard H T and Finkelman R B 1953 Chemical and mineralogical compositions of cosmic and terrestrial spherules from a marine sediment; Deep-Sea Res. 2 239–246.

    Google Scholar 

  • Nakashima D, Ushikubo T, Gowda R N, Kita N T, Valley J W and Nagao K 2011 Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk; Meteorit. Planet. Sci. 46 857–874.

    Article  Google Scholar 

  • Nishiizumi K 1983 Measurement of 53Mn in deep sea iron and stony spherules; Earth Planet. Sci. Lett. 63 223–228.

    Article  Google Scholar 

  • Nishiizumi K, Arnold J R, Fink D, Klen J, Middleton R, Brownlee D E and Maurette M 1991 Exposure history of individual cosmic particles; Earth Planet. Sci. Lett. 104 315–324.

    Article  Google Scholar 

  • Nishiizumi K, Arnold J R, Chafee M W, Finkel R C, Southon J, Brownlee D E and Harvey R P 1992 10Be and 26Al in individual cosmic spherules; Meteoritics 27 269.

    Google Scholar 

  • Nishiizumi K, Arnold J R, Brownlee D E, Chafee M W, Finkel R C and Harvey R P 1995 Beryllium-10 and Aluminium-26 individual cosmic spherules from Antarctica; Meteoritics 30 728–732.

    Article  Google Scholar 

  • Nishiizumi K, Nakamura T, Cafee M W and Yada T 2007 Exposure histories of 10 microgram individual Antarctic micrometeorites: Radionuclide measurements, chemical and morphological analyses; 38th Lunar Planet. Sci., Abstract #2129.

  • Parashar K, Prasad M S and Chauhan S S S 2010 Investigations on a large collection of cosmic dust from the Central Indian Ocean; Earth Moon Planets 107 197–217.

    Article  Google Scholar 

  • Peuker-Ehrenbrink B 1996 Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine Osmium isotope record; Geochim. Cosmochim. Acta 60 3187–3196.

    Article  Google Scholar 

  • Peuker-Ehrenbrink B and Ravizza G 2000 The effects of sampling artifacts on cosmic dust flux estimates: A revaluation of non volatile tracers (Os, Ir); Geochim. Cosmochim. Acta 64 1965–1970.

    Article  Google Scholar 

  • Pouchou J L and Pichoir F 1991 Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP; In: Electrone Probe Quantitation (eds) Heinrich K F J and Newbury D E, pp. 31–75 (Newyork: Plenum Press).

    Chapter  Google Scholar 

  • Prasad M S, Rudraswami N G and Deepak Panda 2013 Flux of large micrometeorites on the earth during the last ~50,000 years (in preparation).

  • Raisbeck G M and Yiou F 1987 10Be and 26Al in micrometeorites from Greenland Ice (abstract); Meteoritics 22 485.

    Google Scholar 

  • Raisbeck G M, Yiou F, Klein J, Middleton R, Yamakoshi Y and Brownlee D E 1983 26Al and 10Be in deep sea stony spherules: Evidence for small parent bodies; 14th Lunar Planet. Sci. Conf., Asbtract #1315.

  • Ravizza G and Mcmurtry G M 1993 Osmium isotopic variations in metalliferous sediments from the East Pacific Rise and the Bauer Basin; Geochim. Cosmochim. Acta 57 4301–4310.

    Article  Google Scholar 

  • Rochette P, Folco L, Suavet C, Ginneken V M, Gattacceca J, Perchiazzi N, Braucher R and Harvey R P 2008 Micrometeorites from the Transantarctic Mountains; Proc. Natl. Acad. Sci. USA 105 18206–18211.

    Article  Google Scholar 

  • Rudraswami N G, Parashar K and Prasad M S 2011 Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean; Meteorit. Planet. Sci. 46 470–491.

    Article  Google Scholar 

  • Scott E R D 1988 A new kind of primitive chondrite; Allan Hills 85085; 19th Lunar Planet. Sci. Conf., Abstract #1532.

  • Scott E R and Krot A N 2003 Chondrites and their components; In: Meteorites, Comets and Planets (ed.) Davis A M, Elsevier, 1 143–200.

  • Suavet C, Alaxandre A, Franchi I A, Gattacceca J, Sonsongni C, Greenwood R C, Folco L and Rochette P 2010 Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios; Earth Planet. Sci. Lett. 293 313–320.

    Article  Google Scholar 

  • Suavet C, Cordier C, Rochette P, Falco L, Gattacceca J, Sonzogni C and Damphoffer D 2011 Ordinary chondrite-related giant (>800 μm) cosmic spherules from the Transantarctic Mountains, Antarctica; Geochim. Cosmochim. Acta 75 6200–6210.

    Article  Google Scholar 

  • Taylor S and Brownlee D E 1991 Cosmic spherules in the geological record; Meteorit. Planet. Sci. 26 203–211.

    Article  Google Scholar 

  • Taylor S, Lever J H and Harvey R 1998 Accretion rate of cosmic spherule measured at South Pole; Nature 392 899–903.

    Article  Google Scholar 

  • Taylor S, Lever J H and Harvey R P 2000 Number, types and composition of an unbiased collection of cosmic spherules; Meteorit. Planet. Sci. 35 651–666.

    Article  Google Scholar 

  • Taylor S, Alexander O’D C M, Delaney J, Ma P, Herzog G F and Engrand C 2005 Isotopic fractionation of Iron, Potassium and Oxygen in stony cosmic spherules: Implications for heating histories and sources; Geochim. Cosmochim. Acta 69 2647–2662.

    Article  Google Scholar 

  • Taylor S, Herzog G and Delaney J 2006 Crumbs from crust of Vesta: Achondritic cosmic spherules from the South Pole Water well; Meteorit. Planet. Sci. 42 223–233.

    Article  Google Scholar 

  • Taylor S, Alexander O’D C M and Wengert C 2008 Rare Micrometeorites from the South Pole, Antarctica; 39th Lunar Planet. Sci., Abstract #1628.

  • Taylor S, Delaney J S and Herzog G F 2010a A CAI micrometeorite; 41st Lunar Planet. Sci. Conf., Abstract #1205.

  • Taylor S, Lindsay F N and Delaney J S 2010b Albitic plagioclase in micrometeorites from the South Pole water well, Antarctica (abstract); 74th Ann. Meeting Meteorit. Soc. 5051.

  • Taylor S, Matrajt G and Guan Y 2011 Fine-grained precursors dominate the micrometeoirtes flux; Meteorit. Planet. Sci. 1–15.

  • Thiel E and Schimidt R A 1961 Spherules from the Antarctic ice caps (abstract); J. Geophys. Res. 66 307–310.

    Article  Google Scholar 

  • Toppani A and Libourel G 2003 Factors controlling compositions of cosmic spinels: Application to atmospheric entry conditions of meteoritic materials; Geochim. Cosmochim. Acta 67 4621–4638.

    Article  Google Scholar 

  • Toppani A, Libourel G, Engrand C and Maurette M 2001 Experimental simulation of atmospheric entry of micrometeorites; Meteorit. Planet. Sci. 36 1377–1396.

    Article  Google Scholar 

  • Wasson J T and Kallemeyn G W 1988 Composition of chondrites; Phil. Trans. Roy. Soc. London A 325 535–544.

    Article  Google Scholar 

  • Wasson J T and Kallemeyn G W 1990 Allanhills 85085: A subchondritic meteorite of mixed nebular and regolithic heritage; Earth Planet. Sci. Lett. 101 148–161.

    Article  Google Scholar 

  • Weisberg M K, Prinz M and Nehru C E 1998 Petrology of ALH85085: A chondrite with unique characteristics; Earth Planet. Sci. Lett. 91 19–32.

    Article  Google Scholar 

  • Wlochowiks R, Hllgren D S, Hemenway C L and Tackett C D 1976 Magellan: A balloon-borne collection technique for large cosmic dust particles (abstract); Can. J. Phys. 54 317–321.

    Article  Google Scholar 

  • Yada T, Nakamura T, Noguchi T, Matsumoto N, Kusakabe M, Hiyagon H, Ushikubo T, Sugiura N, Kojima H and Takaoka N 2005 Oxygen isotopic and chemical compositions of cosmic spherules collected from the Antarctic ice sheet: Implications for their precursor; Geochim. Cosmochim. Acta 69 5789–5804.

    Article  Google Scholar 

  • Zolensky M, Barrette R and Browning L 1993 Mineralogy and composition of matrix and chondrule rim in carbonaceous chondrites; Geochim. Cosmochim. Acta 57 3123–3148.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, NIO, Goa for the support and encouragement for this work. They express their gratitude to Mr. Vijay Khedekar for his technical support during SEM and EPMA work. This research has made use of NASA’s Astrophysics Data System. They are also grateful to the reviewer for the valuable comments and suggestions which helped to improve the manuscript. This project is funded by ISRO–PRL, Ahmadabad under the PLANEX program. This is NIO’s contribution no. 5313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M SHYAM PRASAD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RESHMA, K., RUDRASWAMI, N.G. & SHYAM PRASAD, M. Chondrule-like object from the Indian Ocean cosmic spherules. J Earth Syst Sci 122, 1161–1171 (2013). https://doi.org/10.1007/s12040-013-0333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0333-8

Keywords

Navigation