Skip to main content
Log in

Microtexture, nanomineralogy, and local chemistry of cryptocrystalline cosmic spherules

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) data on three cryptocrystalline (CC) cosmic spherules of chondritic composition (Mg/Si ≈ 1) from two collections taken up at glaciers at the Novaya Zemlya and in the area of the Tunguska event. The spherules show “brickwork” microtextures formed by minute parallel olivine crystals set in glass of pyroxene–plagioclase composition. The bulk-rock silicate chemistry, microtexture, mineralogy, and the chemical composition of the olivine and the local chemistry of the glass in these spherules testify to a chondritic source of the spherules. The solidification of the spherules in the Earth’s atmosphere was proved to be a highly unequilibrated process. A metastable state of the material follows, for example, from the occurrence of numerous nanometer-sized SiO2 globules in the interstitial glass. These globules were formed by liquid immiscibility in the pyroxene–SiO2 system. Troilite FeS and schreibersite (Fe,Ni)3P globules were found in the FeNi metal in one of the spherules, which suggests that the precursor was not chemically modified when melted in the Earth’s atmosphere. Our results allowed us to estimate the mineralogy of the precursor material and correlate the CC spherules with the chondrule material of chondrites. The bulk compositions of the spherules are closely similar to those of type-IIA chondrules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. S. Andreev, O. V. Mazurin, E. A. Porai-Koshits, G. P. Roslova, and V. N. Filippovich, Liquid Immiscibility in Glasses, (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  • D. D. Badjukov and J. Raitala, “Micrometeorites from the northern ice cap of the Novaya Zemlya archipelago, Russia: the first occurrence,” Meteorit. Planet. Sci. 38, 329–340 (2003).

    Article  Google Scholar 

  • D. D. Badjukov, F. Brandstätter, J. Raitala, and G. Kurat, “Basaltic micrometeorites from the Novaya Zemlya glacier,” Meteorit. Planet. Sci. 45 (9), 1502–1512 (2010).

    Article  Google Scholar 

  • D. D. Badjukov, A. V. Ivanov, J. Raitala, and N. R. Khisina, “Spherules from the Tunguska event site: could they originate from the Tunguska cosmic body?” Geochem. Int. 49 (7), 641–653 (2011).

    Article  Google Scholar 

  • A. J. Berry and H. St. O’Neill, “A XANES determination of the oxidation state of chromium in silicate glasses,” Am. Mineral. 89, 790–798 (2004)

    Article  Google Scholar 

  • M. B. Blanchard, D. E. Brownlee, T. E. Bunch, P. W. Hodge, and F. T. Kyte, “Meteoroid ablation spheres from deep sea sediments,” Earth Planet. Sci. Lett. 46, 178–190 (1980).

    Article  Google Scholar 

  • D. E. Brownlee, B. A. Bates, and R. H. Beauchamps, “Meteor ablation spherules as chondrule analogs,” in Chondrules and their Origin, Ed. by E. A. King (Lunar and Planetary Institute, Houston, 1984), pp. 10–25.

    Google Scholar 

  • D. E. Brownlee, B. Bates, and L. Schram, “The elemental composition of stony cosmic spherules,” Meteorit. Planet. Sci. 32, 157–175 (1997).

    Article  Google Scholar 

  • D. E. Brownlee, L. B. Pilachowski, and P. W. Hodge, “Meteorite mining in the ocean floor,” Lunar Planet. Sci. Conf. 10, 109–111 (1979).

    Google Scholar 

  • C.-H. Chen and D. C. Presnall, “The system Mg2SiO4–SiO2 at pressures up to 25 kilobars,” Am. Mineral. 60, 398–406 (1975).

    Google Scholar 

  • R. N. Clayton, T. K. Mayeda, and D. E. Brownlee, “Oxygen isotopes in deep-sea spherules,” Earth Planet. Sci. Lett. 79, 235–240 (1986).

    Article  Google Scholar 

  • C. Cordier, L. Folco, C. Suavet, C. Sonzogni, and P. Rochette, “Major, trace element and oxygen isotope study of glass cosmic spherules of chondrite composition: the record of their source material and atmospheric entry heating,” Geochim. Cosmochim. Acta 75, 5203–5218 (2011).

    Article  Google Scholar 

  • J. A. Dalton and D. C. Presnall “No liquid immiscibility in the system MgSiO3–SiO2 at 5.0 GPa,” Geochim. Cosmochim. Acta 61 (12), 2367–2373 (1997).

    Article  Google Scholar 

  • C. Engrand, K. D. McKegan, L. A. Leshin, and D. E. Brownlee, “In-situ measurement of oxygen isotopic compositions of deep-sea and Antarctic cosmic spherules,” Lunar Planet. Sci. Conf. 29, abstract #1473 (1998).

  • F. Ya. Galakhov, “Microliquid immiscibility and its image in the two-phase diagram,” Izv. Akad. Nauk, Ser. Khim., No. 8, 1377–1383 (1964).

    Google Scholar 

  • M. J. Genge and M. M. Grady, “Melted micrometeorites from Antarctic ice with evidence for the separation of immiscible Fe–Ni–S liquids during entry heating,” Meteorit. Planet. Sci. 33, 425–439 (1998).

    Article  Google Scholar 

  • T. Gondo and H. Isobe, “Artificial cosmic spherules produced by melting experiments of the powdered Allende meteorite,” Lunar Planet. Sci. Conf. 44, abstract #1882 (2013).

  • R. H. Hewins, B. Zanda, and C. Bendersky, “Evaporation and recondensation of sodium in Semarcona Type II chondrules,” Geochim. Cosmochim. Acta 78, 1–17 (2012).

    Article  Google Scholar 

  • R. H. Jones, “Petrology and mineralogy of type-II, FeOrich chondrules in Semarkona (LL3.0)—origin by closedsystem fractional crystallization, with evidence for supercooling,” Geochim. Cosmochim. Acta 54, 1785–1802 (1990).

    Article  Google Scholar 

  • S. A. Kirillova, V. I. Al’myashev, and V. V. Gusarov, “Spinodal breakdown in the SiO2–TiO2 system and formation of hierarchically arranged nanostructures,” Nanosyst.: Fiz., Khim., Mathem. 3 (2), 100–115 (2012).

    Google Scholar 

  • R. J. Kirkpatrick, B. H. Reck, I. Z.Pelly, and Lung-Chuan Kuo, “Programmed cooling experiments in the system MgO–SiO2: kinetics of a peritectic reaction,” Am. Mineral. 68, 1095–1101 (1983).

    Google Scholar 

  • G. Kurat, C. Koeberl, T. Presper, F. Brandstatter, and M. Maurette, “Petrology and geochemistry of Antarctic micrometeorites,” Geochim. Cosmochim. Acta 58, 3879–3904 (1994).

    Article  Google Scholar 

  • D. S. Laurette, H. Nagahara, and C. M. O’ D. Alexander, “Petrology and origin of ferromagnesian silicate chondrules,” in Meteorites and the Early Solar System II, Ed. by D. S. Laurette and H. Y. McSween (Univ. of Arizona Press, 2006), pp. 431–459.

    Google Scholar 

  • S. G. Love and D. E. Brownlee, “Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere,” Icarus 89, 26–43 (1991).

    Article  Google Scholar 

  • S. G. Love and D. E. Brownlee “A direct measurement of the terrestrial mass accretion rate of cosmic dust,” Science 262, 550–553 (1993).

    Article  Google Scholar 

  • M. Maurette, C. Olinger, M. C. Mishel-Levy, G. Kurat, M. Pourchet, F. Brandstatter, and M. Bourot-Denise, “A collection of diverse micrometeorites recovered from 100 tonns of Antarctic blue ice,” Nature 351, 44–46 (1991).

    Article  Google Scholar 

  • H. D. Palme, C. Hezel, and D. S. Ebel, “The origin of chondrules: constraints from matrix composition and matrix–chondrule complementarity,” Earth Planet. Sci. Lett. 411, 11–19 (2015).

    Article  Google Scholar 

  • K. M. Parashar, S. Prasad, and S. S. Chauhan. “Investigation on a large collection of cosmic dust from the central Indian Ocean,” Earth Moon Planets 107, 197–217 (2010).

    Article  Google Scholar 

  • P. Rochette, L. Folco, C. Suavet, M. van Ginneken, J. Gattacceca, N. Perchiazzi, R. Braucher, and R. P. Harvey, “Micrometeorites from the Transantarctic Mountains,” PNAS 105, 18206–18211 (2008).

    Article  Google Scholar 

  • Taylor S. and Brownlee, D. E. “Cosmic spherules in the geologic record,” Meteoritics 26, 203–211 (1991).

    Article  Google Scholar 

  • S. Taylor, C. M. O. Alexander, J. S. Delaney, P. Ma, G. F. Herzog, and C. Engrand, “Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules: implications for heating histories and sources,” Geochim. Cosmochim. Acta 69, 2647–2662 (2005).

    Article  Google Scholar 

  • S. Taylor, J. H. Lever, and R. P. Harvey, “Numbers, types, and compositions of an unbiased collection of cosmic spherules,” Meteorit. Planet. Sci. 35, 651–666 (2000).

    Article  Google Scholar 

  • I. V. Veksler, A. M. Dorfman, D. Rhede, R. Wirth, A. A. Borisov, and D. B. Dingwell, “Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2,” J. Geol. 256, 119–130 (2008).

    Google Scholar 

  • T. Yada and H. Kojima, “The collection of micrometeorites collected in the Yamato Meteorite Ice Field of Antarctica in 1998,” Antarct. Meteorit. Res. 13, 9–18 (2000).

    Google Scholar 

  • T. Yada, T. Nakamura, T. Noguchi, N. Matsumoto, M. Kusakabe, H. Hiyagon, T. Ushikubo, N. Sugiura, H. Kojima, and N. Takaoka, “Oxygen isotopic and chemical compositions of cosmic spherules collected from the Antarctic ice sheet: implications for their precursor material,” Geochim. Cosmochim. Acta 69, 5789–5804 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Khisina.

Additional information

Original Russian Text © N.R. Khisina, D.D. Badyukov, R. Wirth, 2016, published in Geokhimiya, 2016, No. 1, pp. 78–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisina, N.R., Badyukov, D.D. & Wirth, R. Microtexture, nanomineralogy, and local chemistry of cryptocrystalline cosmic spherules. Geochem. Int. 54, 68–77 (2016). https://doi.org/10.1134/S0016702916010067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916010067

Keywords

Navigation