Skip to main content
Log in

Enhancing catalytic activity of UiO-66 through CuO nanoparticles incorporation: a study on Henry reaction and one-pot allylic C-H bond oxidation of olefins

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, we prepared CuO NPs@UiO-66, a zirconium-based metal-organic framework with a nanoporous structure and high surface area, through a solvothermal method involving the in situ incorporation of pre-synthesized CuO nanoparticles. The synthesized material was characterized using various techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms (BET-BJH). The catalytic activity of the synthesized catalyst, CuO NPs@UiO-66, was examined in both the Henry reaction and one-pot allylic C-H bond oxidation of olefins. Remarkably, the catalyst exhibited excellent recyclability, maintaining high yields and activity for up to three cycles.

Graphical abstract

CuO NPs@UiO-66 was synthesized by a solvothermal method involving the in situ incorporation of pre-synthesized CuO nanoparticles. Its catalytic activity was evaluated in the Henry reaction and one-pot allylic C-H bond oxidation of olefins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Klingler F D 2007 Asymmetric hydrogenation of prochiral amino ketones to amino alcohols for pharmaceutical use Acc. Chem. Res. 40 1367

    Article  CAS  Google Scholar 

  2. Hicks A, McCafferty G P, Riedel E, Aiyar N, Pullen M, Evans C, et al. 2007 GW427353 (solabegron), a novel, selective β3-adrenergic receptor agonist, evokes bladder relaxation and increases micturition reflex threshold in the dog J. Pharmacol. Exp. Ther. 323 202

    Article  CAS  PubMed  Google Scholar 

  3. Bollmeier A F Jr. 2000 Alkanolamines from Nitro Alcohols. In Kirk-Othmer Encyclopedia of Chemical Technology 

    Google Scholar 

  4. Akutu K, Kabashima H, Seki T and Hattori H 2003 Nitroaldol reaction over solid base catalysts Appl. Catal. A: Gen. 247 65

    Article  CAS  Google Scholar 

  5. Boruwa J, Gogoi N, Saikia P P and Barua N C 2006 Catalytic asymmetric Henry reaction Tetrahedron: Asymmetry 17 3315

    Article  CAS  Google Scholar 

  6. Luzzio F A 2001 The Henry reaction: recent examples Tetrahedron 57 915

    Article  CAS  Google Scholar 

  7. Ballini R and Bosica G 1996 Nitroaldol reaction in aqueous media: An important improvement of the Henry reaction J. Org. Chem. 62 425

    Article  Google Scholar 

  8. Varma R S, Dahiya R and Kumar S 1997 Microwave-assisted Henry reaction: Solventless synthesis of conjugated nitroalkenes Tetrahedron Lett. 38 5131

    Article  CAS  Google Scholar 

  9. Evans D A, Seidel D, Rueping M, Lam H W, Shaw J T and Downey C W 2003 A new copper acetate-bis (oxazoline)-catalyzed, enantioselective Henry reaction J. Am. Chem. Soc. 125 12692

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka S, Kochi K, Ito H, Mukawa J, Kishikawa K, Yamamoto M and Kohmoto S 2009 Transformation of β-nitro alcohols to the corresponding nitro imines with lithium hexamethyldisilazide (LHMDS) via sequential retro nitro-aldol–nitro-Mannich reaction Synth. Commun. 39 868

    Article  CAS  Google Scholar 

  11. García-Cabeza A L, Marín-Barrios R, Moreno-Dorado F J, Ortega M J, Massanet G M and Guerra F M 2014 Allylic oxidation of alkenes catalyzed by a copper–aluminum mixed oxide Org. Lett. 16 1598

    Article  PubMed  Google Scholar 

  12. Gatica J M, García-Cabeza A L, Yeste M P, Marín-Barrios R, González-Leal J M, Blanco G, et al. 2016 Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch-Sosnovsky oxidation of cyclohexene Chem. Eng. J. 290 174

    Article  CAS  Google Scholar 

  13. Shi E, Shao Y, Chen S, Hu H, Liu Z, Zhang J and Wan X 2012 Tetrabutylammonium iodide catalyzed synthesis of allylic ester with tert-butyl hydroperoxide as an oxidant Org. Lett. 14 3384

    Article  CAS  PubMed  Google Scholar 

  14. Samadi S, Arvinnezhad H, Mansoori S and Parsa H 2022 Preparation and DFT studies of chiral Cu (I)-complexes of biphenyl bisoxazolines and their application in enantioselective Kharasch-Sosnovsky reaction Sci. Rep. 12 1

    Article  Google Scholar 

  15. Samadi S, Arvinnezhad H, Nazari S and Majidian S 2022 Enantioselective allylic C-H bond oxidation of olefins using copper complexes of chiral oxazoline based ligands Top. Curr. Chem. 380 1

    Google Scholar 

  16. Dhakshinamoorthy A, Asiri A M and Garcia H 2015 Metal–organic frameworks catalyzed C-C and C-heteroatom coupling reactions Chem. Soc. Rev. 44 1922

    Article  CAS  PubMed  Google Scholar 

  17. Dhakshinamoorthy A, Asiri A M and Garcia H 2020 Catalysis in confined spaces of metal organic frameworks ChemCatChem 12 4732

    Article  CAS  Google Scholar 

  18. Dhakshinamoorthy A, Asiri A M and Garcia H 2016 Metal–organic frameworks as catalysts for oxidation reactions Chem. Eur. J. 22 8012

    Article  CAS  PubMed  Google Scholar 

  19. Caruso M, Navalón S, Cametti M, Dhakshinamoorthy A, Punta C and García H 2023 Challenges and opportunities for N-hydroxyphthalimide supported over heterogeneous solids for aerobic oxidations Coord. Chem. Rev. 486 215141

    Article  CAS  Google Scholar 

  20. Yaghi O M, Li G and Li H 1995 Selective binding and removal of guests in a microporous metal-organic framework Nature 378 703

  21. Opanasenko M, Dhakshinamoorthy A, Hwang Y K, Chang J S, Garcia H and Čejka J 2013 Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol ChemSusChem 6 865

  22. Cirujano F G, Luque R and Dhakshinamoorthy A 2021 Metal-organic frameworks as versatile heterogeneous solid catalysts for henry reactions Molecules 26 1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhakshinamoorthy A, Montero Lanzuela E, Navalon S and Garcia H 2021 Cobalt-based metal-organic frameworks as solids catalysts for oxidation reactions Catalysts 11 95

    Article  CAS  Google Scholar 

  24. Winarta J, Shan B, Mcintyre S M, Ye L, Wang C, Liu J and Mu B 2019 A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework Cryst. Growth Des. 20 1347

    Article  Google Scholar 

  25. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S and Lillerud K P 2008 A new zirconium inorganic building brick forming metal-organic frameworks with exceptional stability J. Am. Chem. Soc. 130 13850

    Article  PubMed  Google Scholar 

  26. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, et al. 2018 Stable metal-organic frameworks: design, synthesis, and applications Adv. Mater. 30 1704303

    Article  Google Scholar 

  27. Guo Z, Xiao C, Maligal-Ganesh R V, Zhou L, Goh T W, Li X, Tesfagaber D, Thiel A and Huang W 2014 Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation ACS Catal. 4 1340

  28. Friščić T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, et al. 2013 Real-time and in situ monitoring of mechanochemical milling reactions Nat. Chem. 5 66

    Article  PubMed  Google Scholar 

  29. Védrine J C 2017 Heterogeneous catalysis on metal oxides Catalysts 7 341

    Article  Google Scholar 

  30. Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H and Amala R 2017 Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review J. Mater. Chem. 5 8825

    Article  CAS  Google Scholar 

  31. Lu Z Z, Zhang R, Li Y Z, Guo Z J and Zheng H G 2011 Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules J. Am. Chem. Soc. 133 4172

    Article  CAS  PubMed  Google Scholar 

  32. Otero A, Fernández-Baeza J, Antinolo A, Tejeda J, Lara-Sánchez A, Sánchez-Barba L, et al. 2004 New complexes of zirconium (IV) and hafnium (IV) with heteroscorpionate ligands and the hydrolysis of such complexes to give a zirconium cluster Inorg. Chem. 43 1350

    Article  CAS  PubMed  Google Scholar 

  33. Frietsch M, Zudock F, Goschnick J and Bruns M 2000 CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors Sens. Actuat. B Chem. 65 379

    Article  CAS  Google Scholar 

  34. Maruyama T 1998 Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate Sol. Energy Mater. Sol. Cells 56 85

    Article  CAS  Google Scholar 

  35. Hong Z S, Cao Y and Deng J F 2002 A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles Mater. Lett. 52 34

    Article  CAS  Google Scholar 

  36. Fiaz M, Athar M, Rani S, Najam-ul-Haq M and Farid M A 2020 One pot solvothermal synthesis of Co3O4@ UiO-66 and CuO@ UiO-66 for improved current density towards hydrogen evolution reaction Mater. Chem. Phys. 239 122320

    Article  CAS  Google Scholar 

  37. Samadi S, Ashouri A and Ghambarian M 2017 Use of CuO encapsulated in mesoporous silica SBA-15 as a recycled catalyst for allylic C-H bond oxidation of cyclic olefins at room temperature RSC Adv. 7 19330

  38. Samadi S, Ashouri A, Kamangar S and Pourakbari F 2020 2-Aminopyrazine-functionalized MCM-41 nanoporous silica as a new efficient heterogeneous ligand for Cu-catalyzed allylic C-H bonds oxidation of olefins Res. Chem. Intermed. 46 557

    Article  CAS  Google Scholar 

  39. Samadi S, Ashouri A, Majidian S and Rashid H I 2020 Synthesis of new alkenyl iodobenzoate derivatives via Kharasch-Sosnovsky reaction using tert-butyl iodo benzoperoxoate and copper (I) iodide J. Chem. Sci. 132 1

    Article  Google Scholar 

  40. Samadi S, Ashouri A, Rashid H I, Majidian S and Mahramasrar M 2021 Immobilization of (L)-valine and (L)-valinol on SBA-15 nanoporous silica and their application as chiral heterogeneous ligands in the Cu-catalyzed asymmetric allylic oxidation of alkenes New J. Chem. 45 17630

    Article  CAS  Google Scholar 

  41. Samadi S, Ashouri A and Samadi M 2020 Synthesis of chiral allylic esters by using the new recyclable chiral heterogeneous oxazoline-based catalysts ACS Omega 5 22367

    Article  CAS  Google Scholar 

  42. Samadi S, Jadidi K, Khanmohammadi B and Tavakoli N 2016 Heterogenization of chiral mono oxazoline ligands by grafting onto mesoporous silica MCM-41 and their application in copper-catalyzed asymmetric allylic oxidation of cyclic olefins J. Catal. 340 344

    Article  CAS  Google Scholar 

  43. Samadi S, Jadidi K and Notash B 2013 Chiral bisoxazoline ligands with a biphenyl backbone: development and application in catalytic asymmetric allylic oxidation of cycloolefins Tetrahedron: Asymm. 24 269

    Article  CAS  Google Scholar 

  44. Samadi S, Jadidi K, Samadi M, Ashouri A and Notash B 2019 Designing chiral amido-oxazolines as new chelating ligands devoted to direct Cu-catalyzed oxidation of allylic C-H bonds in cyclic olefins Tetrahedron 75 862

    Article  CAS  Google Scholar 

  45. Samadi S, Nazari S, Arvinnezhad H, Jadidi k and Notash B 2013 A significant improvement in enantioselectivity, yield, and reactivity for the copper-bi-o-tolyl bisoxazoline-catalyzed asymmetric allylic oxidation of cyclic olefins using recoverable SBA-15 mesoporous silica material Tetrahedron 69 6679

  46. Dubal D P, Dhawale D S, Salunkhe R R, Jamdade V S and Lokhande C D 2010 Fabrication of copper oxide multilayer nanosheets for supercapacitor application J. Alloys Compd. 492 26

    Article  CAS  Google Scholar 

  47. Reddy K R 2017 Green synthesis, morphological and optical studies of CuO nanoparticles J. Mol. Struct. 1150 553

    Article  CAS  Google Scholar 

  48. Sadeghi S, Jafarzadeh M, Abbasi A R and Daasbjerg K 2017 Incorporation of CuO NPs into modified UiO-66-NH2 metal-organic frameworks (MOFs) with melamine for catalytic C-O coupling in the Ullmann condensation New J. Chem. 41 12014

    Article  CAS  Google Scholar 

  49. Lanje A S, Sharma S J, Pode R B and Ningthoujam R S 2010 Synthesis and optical characterization of copper oxide nanoparticles Adv. Appl. Sci. Res. 1 36

    CAS  Google Scholar 

  50. Campbell J and Tokay B 2017 Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates Micropor. Mesopor. Mater. 251 190

    Article  CAS  Google Scholar 

  51. Wang H, Xu J Z, Zhu J J and Chen H Y 2002 Preparation of CuO nanoparticles by microwave irradiation J. Cryst. Growth 244 88

    Article  CAS  Google Scholar 

  52. Sovová T, Kocí V and Kochánková L 2009 Ecotoxicity of nano and bulk forms of metal oxides. In: Proceedings, NANOCON Conference, Roznov pod Radhostem Czech Republic 62

  53. Luna I Z, Chowdhury A M S, Gafur M A and Khan R A 2015 Measurement of forced convective heat transfer coefficient of low volume fraction CuO-PVA nanofluids under laminar flow condition Am. J. Nanomater. 3 64

    CAS  Google Scholar 

  54. Wang A, Zhou Y, Wang Z, Chen M, Sun L and Liu X 2016 Titanium incorporated with UiO-66 (Zr)-type metal-organic framework (MOF) for photocatalytic application RSC Adv. 6 3671

  55. Tai S, Zhang W, Zhang J, Luo G, Jia Y, Deng M and Ling Y 2016 Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery Micropor. Mesopor. Mater. 220 148

    Article  CAS  Google Scholar 

  56. Abid H R, Ang H M and Wang S 2012 Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66) Nanoscale 4 3089

  57. Cao Y, Zhao Y, Lv Z, Song F and Zhong Q 2015 Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites J. Ind. Eng. Chem. 27 102

    Article  CAS  Google Scholar 

  58. Poreddy R, Engelbrekt C and Riisager A 2015 Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air Catal. Sci. Technol. 5 2467

    Article  CAS  Google Scholar 

  59. Limvorapitux R, Chen H, Mendonca M L, Liu M, Snurr R Q and Nguyen S T 2019 Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent Catal. Sci. Technol. 9 327

    Article  CAS  Google Scholar 

  60. Samadi S and Samadi M 2020 The synthesis of allylic esters via direct allylic C-H bonds oxidation of cycloolefins in the presence of copper oxide nanoparticles and nanoporous silica Nashrieh Shimi va Mohandesi Shimi Iran 38 53

    Google Scholar 

  61. Rezaei A, Zheng H, Majidian S, Samadi S and Ramazani A 2023 Chiral pseudohomogeneous catalyst based on amphiphilic carbon quantum dots for the enantioselective Kharasch-Sosnovsky reaction ACS Appl. Mater. Interfaces 15 54373

    Article  CAS  PubMed  Google Scholar 

  62. Sehhat Z, Mansoori S, Arvinnezhad H, Naghdi Y and Samadi S 2023 Application of chiral Betti base-copper complexes in enantioselective allylic oxidation of olefins, computational studies of the Betti bases, and docking of the resulting chiral allylic esters Mol. Catal. 538 113011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Kurdistan Research Council and the Iran National Science Foundation (Project No: 4003026) for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Samadi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahramasrar, M., Rezajo, S., Majidian, S. et al. Enhancing catalytic activity of UiO-66 through CuO nanoparticles incorporation: a study on Henry reaction and one-pot allylic C-H bond oxidation of olefins. J Chem Sci 136, 25 (2024). https://doi.org/10.1007/s12039-024-02256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02256-8

Keywords

Navigation