Skip to main content
Log in

Design, synthesis of coumarin tethered 1,2,3-triazoles analogues, evaluation of their antimicrobial and α-amylase inhibition activities

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A vital transition metal Cu(II) ion catalyzed reaction was encrypted in the synthesis of new coumarin tethered triazoles 6(a-i) using the substituted azidobenzenes and substituted 3-acetyl-2H-chromen-2-ones in the presence of oxidative potassium persulfate, and DMF as a solvent and C5-H source. The structure proofs of the new compounds were provided by the spectral analysis. The in vitro antimicrobial activities of the target compounds indicate that compounds 6c and 6g of the series have potent inhibition against the tested bacteria and fungi species. Among the synthesized series compound 6g was found potent for α-amylase inhibition activity.

Graphical abstract

Synopsis. Dimethylformamide was used as a solvent and C5-H source reagent in the synthesis of triazole rings. The reaction of substituted azides, 2(a-e) and substituted 3-acetyl-2-oxo-2H-chromenes, 5(a-b) in the presence of a catalytic amount of Cu(NO3)2 and an oxidant K2S2O8 was carried out under reflux conditions using an oil bath for 36-48 h. From the reaction mixture, the target compounds 6(a-i) were extracted with ethyl acetate. The synthesized coumarin-triazole hybrids, 6(a-i) were spectroscopically characterized and evaluated for antimicrobial and α-amylase inhibitory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Meldal M and Tornøe C W 2008 Cu-catalyzed azide-alkyne cycloaddition Chem. Rev. 108 2952

    Article  CAS  PubMed  Google Scholar 

  2. Lipshutz B H and Yamamoto Y 2008 Introduction: Coinage metals in organic synthesis Chem. Rev. 108 2793

    Article  CAS  PubMed  Google Scholar 

  3. Alonso F, Moglie Y, Radivoy G and Yus M 2012 Copper-catalysed multicomponent click synthesis of 5-alkynyl 1,2,3-triazoles under ambient conditions Synlet 23 2179

    Article  CAS  Google Scholar 

  4. Ajay Kumar K, Renuka N, Pavithra G and Vasanth Kumar G 2015 Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest J. Chem. Pharm. Res. 67

  5. Lal S and Díez-Gonzalez S J 2011 [CuBr(PPh3)3] for azide−alkyne cycloaddition reactions under strict click conditions Org. Chem. 76 2367

    Article  CAS  Google Scholar 

  6. Yamada Y M A, Sarkar S M and Uozumi Y 2012 Amphiphilic self-assembled polymeric copper catalyst to parts per million levels: click chemistry J. Am. Chem. Soc. 134 9285

    Article  CAS  PubMed  Google Scholar 

  7. Veerakumar P, Velayudham M, Lub K L and Rajagopal S 2011 Highly dispersed silica-supported nanocopper as an efficient heterogeneous catalyst: Application in the synthesis of 1, 2, 3-triazoles and thioethers Catal. Sci. Technol. 1 1512

    Article  CAS  Google Scholar 

  8. Abdulkin P, Moglie Y, Knappett B R, Jefferson D A, Yus M, Alonso F and Wheatley A E H 2013 New routes to Cu (I)/Cu nanocatalysts for the multicomponent click synthesis of 1, 2, 3-triazoles Nanoscale 5 342

    Article  CAS  PubMed  Google Scholar 

  9. Anil Kumar B S P, Reddy K H V, Madhav B, Ramesh K and Nageswar Y V D 2012 Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using click chemistry Tetrahedron Lett. 53 4595

    Article  CAS  Google Scholar 

  10. Szabolcs K, Zih-Perenyi K, Adam R and Zoltan N 2012 Copper on iron: catalyst and scavenger for azide–alkyne cycloaddition Synthesis 44 3722

    Article  Google Scholar 

  11. Nagamallu R and Kariyappa A K 2013 Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents Bioorg. Med. Chem. Lett. 23 6406

    Article  PubMed  Google Scholar 

  12. Yoo H J and Youn S W 2019 Zn(II)-catalyzed one-pot synthesis of coumarins from ynamides and salicylaldehydes Org. Lett. 21 3422

    Article  CAS  PubMed  Google Scholar 

  13. ChannaBasappa V, Kumara K, Neratur L K and Kariyappa A K 2018 Synthesis, crystal structure studies and Hirshfeld surface analysis of 6-chloro-7-hydroxy-4-methyl-2H-chromen-2-one Chem. Data Coll. 15 134

    Google Scholar 

  14. Yang L S, Wang Y, Wang E H, Yang J, Pan X, Liao X and Yang X S 2020 Polyphosphoric acid-promoted synthesis of coumarins lacking substituents at positions 3 and 4 Synth. Commun. 50 3080

    Article  CAS  Google Scholar 

  15. Ostrov D A, Hernández Prada J A, Corsino P E, Finton K A, Le N and Rowe T C 2007 Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening Antimicr. Age. Chemoth. 51 3688

    Article  CAS  Google Scholar 

  16. Renuka N and Ajay Kumar K 2015 Synthesis and biological evaluation of fused pyrans bearing coumarin moiety as potent antimicrobial agents Philip. J. Sci. 144 91

    Google Scholar 

  17. Nagamallu R, Gurunanjappa P and Kariyappa A K 2017 Synthesis of coumarin appended 1,3-oxazines as potent antimicrobial and antioxidant agents Pharma. Chem. J. 51 582

    Article  CAS  Google Scholar 

  18. Bansal Y, Sethi P and Bansal G 2012 Coumarin: a potential nucleus for anti-inflammatory molecules Med. Chem. Res. 22 3049

    Article  Google Scholar 

  19. De Almeida Barros T A, De Freitas L A R, Filho J M B, Nunes X P, Giulietti A M, De Souza G E, et al. 2010 Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain J. Pharm. Pharmacol. 62 205

    Article  Google Scholar 

  20. Musa M A, Badisa V L D, Latinwo L M, Waryoba C and Ugochukwu N 2010 In vitro cytotoxicity of benzopyranone derivatives with basic side chain against human lung cell lines Anticanc. Res. 30 4613

    CAS  Google Scholar 

  21. Hwu J R, Lin S Y, Tsay S C, De Clercq E, Leyssen P and Neyts J 2011 Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C Virus J. Med. Chem. 54 2114

    Article  CAS  PubMed  Google Scholar 

  22. Renuka N and Ajay Kumar K 2015 Stereo selective synthesis of novel pyrazole and coumarin appended bridged pyrans as antimicrobial agents Int. J. Pharm. Pharm. Sci. 7 69

    CAS  Google Scholar 

  23. Peng X M, Damu G L V and He Zhou C 2013 Current developments of coumarin compounds in medicinal chemistry Curr. Pharm. Design 19 3884

    Article  CAS  Google Scholar 

  24. Totobenzara J and Burke A J 2015 New click-chemistry methods for 1, 2, 3-triazoles synthesis: recent advances and applications Tetrahedron Lett. 56 2853

    Article  Google Scholar 

  25. Neto J S S and Zeni G 2020 A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles Coord. Chem. Rev. 409 213217

    Article  Google Scholar 

  26. Kaur R, Singh R, Kumar A, Kaur S, Priyadarshi N, Singhal N K and Singh K 2020 1,2,3-Triazole β-lactam conjugates as antimicrobial agents Heliyon 6 e04241

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kamijo S, Jin T, Huo Z and Yamamoto Y 2003 Synthesis of triazoles from nonactivated terminal alkynes via the three-component coupling reaction using a Pd(0)-Cu(I) bimetallic catalyst J. Am. Chem. Soc. 125 7786

    Article  CAS  PubMed  Google Scholar 

  28. Smith C D and Greaney M F 2013 Zinc mediated azide–alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles Org. Lett. 15 4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moses J E and Moorhouse A D 2007 The growing applications of click chemistry Chem. Soc. Rev. 36 1249

    Article  CAS  PubMed  Google Scholar 

  30. Perez J M, Simeone F J, Saeki Y, Josephson L and Weissleder R 2003 Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media J. Am. Chem. Soc. 125 10192

    Article  CAS  PubMed  Google Scholar 

  31. Vagish C B, Sudeep P, Jayadevappa H P and Kumar K A 2020 1,2,4-Triazoles: Synthetic and medicinal perspectives Int. J. Curr. Res. 12 12950

    CAS  Google Scholar 

  32. Sudeep P, Vagish C B, Dileep Kumar A and Ajay Kumar K 2020 1,2,3-Triazoles: A review on current trends in synthetic and biological applications IOSR J. App. Chem. 13 22

    CAS  Google Scholar 

  33. Ye X W, Zheng Y C, Duan Y C, Wang M M, Yu B, Ren J L, et al. 2014 Synthesis and biological evaluation of coumarin–1,2,3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors Med. Chem. Commun. 5 650

    Article  CAS  Google Scholar 

  34. Nagamallu R, Srinivasan B, Ningappa M B and Kariyappa A K 2016 Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and oxidant activities Bioorg. Med. Chem. Lett. 26 690

    Article  CAS  PubMed  Google Scholar 

  35. Basappa V C, Kameshwar V H, Kumara K, Achutha D K, Krishnappagowda L N and Kariyappa A K 2020 Design and synthesis of novel coumarin-triazole hybrids: Biocompatible anti-diabetic agents, in silico molecular docking and ADME screening Heliyon 6 e05290

    Article  Google Scholar 

  36. Shivaprasad Shetty M, Anil Kumar H S and Anil Kumar N V 2018 Synthesis and α-amylase inhibition studies of some coumarin derivatives Pharm. Chem. J. 52 526

    Article  CAS  Google Scholar 

  37. Adib M, Peytam F, Rahmanian-Jazi M, Mohammadi-Khanaposhtani M, Mahernia S, Bijanzadeh H R, et al. 2018 Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents New J. Chem. 42 7268

    Article  Google Scholar 

  38. Basappa V C, Penubolu S, Achutha D K and Kariyappa A K 2021 Synthesis, characterization and antioxidant activity studies of new coumarin tethered 1,3,4-oxadiazole analogues J. Chem. Sci. 133 55

    Article  CAS  Google Scholar 

  39. Vagish C B, Kumara K, Vivek H K, Bharath S, Lokanath N K and Kumar K A 2021 Coumarin-triazole hybrids: Design, microwave-assisted synthesis, crystal and molecular structure, theoretical and computational studies, screening for their anticancer potentials against PC-3 and DU-145 J. Mol. Struct. 1230 129899

    Article  CAS  Google Scholar 

  40. Cao Z P, Quan B and Dong H S 2008 Synthesis of (3,5-aryl/methyl-1H-pyrazol-1-yl)-(5-arylamino-2H-1,2,3-triazol-4-yl)methanone J. Chin. Chem. Soc. 55 761

    Article  CAS  Google Scholar 

  41. Raghavendra K R, Sudeep P, Kumar K A and Jayadevappa H P 2020 An efficient synthesis of thiophene conjugated benzothiazepines: In vitro screening for their antimicrobial activity Asian J. Chem. 32 2601

    Article  CAS  Google Scholar 

  42. Sudha P, Zinjarde S S, Bhargava S Y and Kumar A R 2011 Potent α-amylase inhibitory activity of Indian ayurvedic medicinal plants BMC Complement. Altern. Med. 11 5

    Article  Google Scholar 

  43. Liu Y, Nie G, Zhou Z, Jia L and Chen Y 2017 Copper-catalyzed oxidative cross-dehydrogenative coupling/oxidative cycloaddition: Synthesis of 4-acyl-1,2,3-triazoles J. Org. Chem. 82 9198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the IOE Instrumentation Facility, Vijnana Bhavana, University of Mysore, for spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AJAY KUMAR KARIYAPPA.

Ethics declarations

Competing Interest

All authors declare no conflict of interest including financial, personal or other relationships with other people or organizations for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHANNABASAPPA, V., KUMARA, K. & KARIYAPPA, A.K. Design, synthesis of coumarin tethered 1,2,3-triazoles analogues, evaluation of their antimicrobial and α-amylase inhibition activities. J Chem Sci 133, 130 (2021). https://doi.org/10.1007/s12039-021-01997-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01997-0

Keywords

Navigation