Skip to main content
Log in

Switchover from NiIIN2O2 to NiIIN2O2S2 coordination triggered by the redox behaviour of a non-innocent 2-aminophenolate ligand

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Structural analysis of four-coordinate (S = 0) complex [Ni(L1)2] 1 (H2L1 = 4,6-di-tert-butyl-2-(2-benzylthiophenyl)aminophenol) revealed that it has approximately planar NiN2O2 coordination with dangling thioether arms (Mukherjee A and Mukherjee R 2005 Indian J Chem 50A 484–490). The two coordinated ligands are in 2-iminobenzosemiquinonate(1−) π radical (LISQ)·− redox level. Chemical oxidation of 1 by [Fe(η5-C5H5)2](PF6) in CH2Cl2 in the air led to oxidation of one of the (LISQ)·− ligands affording a six-coordinate Ni(II) complex [Ni(L1)2](PF6) 2 in mer configuration. The two tridentate ligands are in (LISQ)·− and 2-iminobenzoquinone (LIBQ)0 redox level (ligand mixed valency). The Ni–N/O/S distances and ligand backbone metrical parameters led us to assign unambiguously the electronic structure of 11+/2 as [NiII{(LISQ)·−}{(LIBQ)0}]1+. The EPR spectral signal of 2 at 120 K exhibits a very large g anisotropy and the magnetic measurement indicates an S = 3/2 ground state. The potential shift observed in going from 1 to coulometrically-generated 12+ is marginal. DFT calculations at the CAM-B3LYP level of theory rationalizes the electronic structure of 1, 11+ and 12+. Time-Dependent (TD)-DFT calculations throw light on the nature of observed absorptions of 1, 11+ and 12+.

Graphic abstract

One-electron oxidation of four-coordinate [NiII(L1)2] 1 (S = 0) Causes additional coordination by two dangling thioethers affording six-coordinate [NiII(L1)2](PF6) 2 (S = 3/2); characterization of 2 has been done by X-ray structural analysis, MOS values, magnetism (ferromagnetic coupling), absorption and EPR spectra, and DFT and TD-DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chirik P J 2011 Preface: Forum on redox-active ligands Inorg. Chem. 50 9737

    Article  CAS  PubMed  Google Scholar 

  2. Storr T and Mukherjee R 2018 Preface for the Forum Issue on applications of metal complexes with ligand-centered radicals Inorg. Chem. 57 9577

    Article  CAS  Google Scholar 

  3. Kaim W 2011 Manifestations of noninnocent ligand behavior Inorg. Chem. 50 9752

    Article  CAS  PubMed  Google Scholar 

  4. Pierpont C G 2011 Ligand redox activity and mixed valency in first-row transition-metal complexes containing tetrachlorocatecholate and radical tetrachlorosemiquinonate ligands Inorg. Chem. 50 9766

    Article  CAS  PubMed  Google Scholar 

  5. Khan F F, Dutta Chowdhury A and Lahiri G K 2020 Bond activations assisted by redox active ligand scaffolds Eur. J. Inorg. Chem. 2020 1138

    Article  CAS  Google Scholar 

  6. Berben L A, de Bruin B and Heyduk A F 2015 Non-innocent ligands Chem. Commun. 51 1553

    Article  CAS  Google Scholar 

  7. Munhá R F, Zarkesh R A and Heyduk A F 2013 Group transfer reactions of d0 transition metal complexes: redox-active ligands provide a mechanism for expanded reactivity Dalton Trans. 42 3751

    Article  PubMed  CAS  Google Scholar 

  8. Kaim W and Schwederski B 2010 Non-innocent ligands in bioinorganic chemistry—An overview Coord. Chem. Rev. 254 1580

    Article  CAS  Google Scholar 

  9. Chirik P J and Wieghardt K 2010 Radical ligands confer nobility on base-metal catalysts Science 327 794

    Article  CAS  PubMed  Google Scholar 

  10. Dzik W I, van der Vlugt J I, Reek J N H and de Bruin B 2011 Ligands that store and release electrons during catalysis Angew. Chem. Int. Ed. 50 3356

    Article  CAS  Google Scholar 

  11. Lyaskovskyy V and de Bruin B 2012 Redox non-innocent ligands: versatile new tools to control catalytic reactions ACS Catal. 2 270

    Article  CAS  Google Scholar 

  12. van der Vlugt J I 2012 Cooperative catalysis with first-row late transition metals Eur. J. Inorg. Chem. 2012 363

    Article  CAS  Google Scholar 

  13. Praneeth V K K, Ringenberg M R and Ward T R 2012 Redox-active ligands in catalysis Angew. Chem. Int. Ed. 51 10228

    Article  CAS  Google Scholar 

  14. Luca O R and Crabtree R H 2013 Redox-active ligands in catalysis Chem. Soc. Rev. 42 1440

    Article  CAS  PubMed  Google Scholar 

  15. Jacquet J, Desage-El Murr M and Fensterbank L 2016 Metal-promoted coupling reactions implying ligand-based redox changes ChemCatChem 8 3310

    Article  CAS  Google Scholar 

  16. Butin K P, Beloglazkina E K and Zyk N V 2005 Metal complexes with non-innocent ligands Russ. Chem. Rev. 74 531

    Article  CAS  Google Scholar 

  17. Poddel’sky A I, Cherkasov V K and Abakumov G A 2009 Transition metal complexes with bulky 4,6-di-tert-butyl-N-aryl(alkyl)-o-iminobenzoquinonato ligands: structure, EPR and magnetism Coord. Chem. Rev. 253 291

    Article  CAS  Google Scholar 

  18. Mao G, Song Y, Hao T, Li Y, Xu T, Zhang H and Jiang T 2014 Progress in the research of radical anion ligands and their complexes Chin. Sci. Bull. 59 2936

    Article  CAS  Google Scholar 

  19. Broere D L J, Plessius R and van der Vlugt J I 2015 New avenues for ligand-mediated processes – expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands Chem. Soc. Rev. 44 6886

    Article  CAS  PubMed  Google Scholar 

  20. Mukherjee R 2020 Assigning ligand redox levels in complexes of 2-aminophenolates: Structural signatures Inorg. Chem. 59 12961

    Article  CAS  PubMed  Google Scholar 

  21. Rajput A, Sharma A K, Barman S K, Saha A and Mukherjee R 2020 Valence tautomerism and delocalization in transition metal complexes of o-amidophenolates and other redox-active ligands. Some recent results Coord. Chem. Rev. 414 213240

    Article  CAS  Google Scholar 

  22. Mukherjee A and Mukherjee R 2011 Bidentate coordination behaviour of potentially tridentate ligand. A mononuclear four-coordinate Ni(II) complex supported by two o-iminobenzosemiquinonato units Indian J. Chem. 50 484

    Google Scholar 

  23. Rajput A, Saha A, Barman S K, Lloret F and Mukherjee R 2019 [CuII{(LISQ)˙}2] (H2L: thioether-appended o-aminophenol ligand) monocation triggers change in donor site from N2O2 to N2O(2)S and valence-tautomerism Dalton Trans. 48 1795

    Article  CAS  PubMed  Google Scholar 

  24. Saha A, Rajput A, Gupta P and Mukherjee R 2020 Probing the electronic structure of [Ru(L1)2]Z (z = 0, 1+ and 2+) (H2L1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels Dalton Trans. 49 15355

    Article  CAS  PubMed  Google Scholar 

  25. Rajput A, Sharma A K, Barman S K, Koley D, Steinert M and Mukherjee R 2014 Neutral, cationic, and anionic low-spin iron(III) complexes stabilized by amidophenolate and iminobenzosemiquinonate radical in N,N,O ligands Inorg. Chem. 53 36

    Article  CAS  PubMed  Google Scholar 

  26. Rajput A, Sharma A K, Barman S K, Lloret F and Mukherjee R 2018 Six-coordinate [CoIII(L)2]z (z = 1−, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2−) and iminosemiquinonate π-radical (1−) redox-levels: the existence of valence-tautomerism Dalton Trans. 47 17086

    Article  CAS  PubMed  Google Scholar 

  27. Ali A, Barman S K and Mukherjee R 2015 Palladium(II) complex of a redox-active amidophenolate-based O, N, S, N ligand: its monocation and dication and reactivity with PPh3 Inorg. Chem. 54 5182

    Article  CAS  PubMed  Google Scholar 

  28. Ali A, Dhar D, Barman S K, Lloret F and Mukherjee R 2016 Nickel(II) complex of a hexadentate ligand with two o-Iminosemiquinonato(1−) π-radical units and its monocation and dication Inorg. Chem. 55 5759

    Article  CAS  PubMed  Google Scholar 

  29. Miller J S and MinK S 2009 Oxidation leading to reduction: redox-induced electron transfer (RIET) Angew. Chem. Int. Ed. 48 262

    Article  CAS  Google Scholar 

  30. Thomas F 2016 Ligand-centred oxidative chemistry in sterically hindered salen complexes: an interesting case with nickel Dalton Trans. 45 10866

    Article  CAS  PubMed  Google Scholar 

  31. Paretzki A, Bubrin M, Jan Fiedler J, Záliš S and Kaim W 2014 Correlated coordination and redox activity of a hemilabile noninnocent ligand in nickel complexes Chem. Eur. J. 20 5414

    Article  CAS  PubMed  Google Scholar 

  32. Ray M, Mukerjee S and Mukherjee R 1990 Manganese(III) complexes of 1,2-bis(2-pyridinecarboxamido)benzene: Synthesis, spectra, and electrochemistry J. Chem. Soc. Dalton Trans. 12 3635

    Article  Google Scholar 

  33. Ercolani C, Gardini M, Pennesi G, Rossi G and Russo U 1988 High-valent iron phthalocyanine µ-nitrido dimers Inorg. Chem. 27 422

    Article  CAS  Google Scholar 

  34. Mukherjee R, Rao C P and Holm R H 1986 The solution chemistry of ethane-1,2-dithiolate complexes: monomer-dimer equilibria and electron-transfer reactions Inorg. Chem. 25 2979

    Article  CAS  Google Scholar 

  35. Ray M, Ghosh D, Shirin Z and Mukherjee R 1997 Highly stabilized low-spin iron(III) and cobalt(III) complexes of a tridentate bis-amide ligand 2,6-bis(N-phenylcarbamoyl)pyridine. Novel nonmacrocyclic tetraamido-N coordination and two unusually short metal−pyridine bonds Inorg. Chem. 36 3568

    Article  CAS  PubMed  Google Scholar 

  36. Patra A K and Mukherjee R 1999 Bivalent, trivalent, and tetravalent nickel complexes with a common tridentate deprotonated pyridine bis-amide ligand. Molecular structures of nickel(II) and nickel(IV) and redox activity Inorg. Chem. 38 1388

    Article  CAS  Google Scholar 

  37. Evans D F 1959 The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 2003

  38. O’Connor C J 1982 Magnetochemistry—advances in theory and experimentation Prog. Inorg. Chem. 29 203

    Google Scholar 

  39. Farrugia, L J 2003 WinGX version 1.64, An integrated systems of windows programs for the solution, refinement and analysis of single-crystal X-ray diffraction data; Department of Chemistry, University of Glasgow: Glasgow, UK

  40. Gaussian 09, revision B.012010 Gaussian, Inc.: Wallingford, CT

  41. Yanai Y, Tew D P and Handy N C 2004 A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 393 51

    Article  CAS  Google Scholar 

  42. Chiang L, Kochem A, Jarjayes O, Dunn T J, Vezin H, Sakaguchi M, et al. 2012 Radical localization in a series of symmetric Ni(II) complexes with oxidized salen ligands Chem. Eur. J. 18 14117

    Article  CAS  PubMed  Google Scholar 

  43. Ginsberg A P 1980 Magnetic exchange in transition metal complexes. 12. Calculation of cluster exchange coupling constants with the Xα-scattered wave method J. Am. Chem. Soc. 102 111

    Article  CAS  Google Scholar 

  44. Noodleman L and Norman J G Jr 1979 The Xα valence bond theory of weak electronic coupling-Application to the low-lying states of Mo2Cl84− J. Chem. Phys. 70 4903

    Article  CAS  Google Scholar 

  45. Noodleman L 1981 Valence bond description of antiferromagnetic coupling in transition metal dimers J. Chem. Phys. 74 5737

    Article  CAS  Google Scholar 

  46. Noodleman L and Davidson E R 1986 Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers Chem. Phys. 109 131

    Article  Google Scholar 

  47. Rodríguez-Fortea A, Alemany P, Alvarez S, Ruiz E, Scuiller A, Decroix C, et al. 2001 Exchange coupling in cyano-bridged homodinuclear Cu(II) and Ni(II) complexes: synthesis, structure, magnetism, and density functional theoretical study Inorg. Chem. 40 5868

    Article  PubMed  CAS  Google Scholar 

  48. Kahn O 1993 In Molecular Magnetism (Wiley-VCH: Weinheim)

    Google Scholar 

  49. Ruiz E, Cano J, Alvarez S and Alemany P 1999 Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes J. Comput. Chem. 20 1391

    Article  CAS  Google Scholar 

  50. Sinnecker S, Neese F, Noodleman L and Lubitz W 2004 Calculating the electron paramagnetic resonance parameters of exchange coupled transition metal complexes using broken symmetry density functional theory: application to a MnIII/MnIV model compound J. Am. Chem. Soc. 126 2613

    Article  CAS  PubMed  Google Scholar 

  51. Soda T, Kitagawa Y, Onishi T, Takano Y, Shigeta Y, Nagao H, et al. 2000 Ab initio computations of effective exchange integrals for H-H, H-He-H and Mn2O2 complex: comparison of broken-symmetry approaches Chem. Phys. Lett. 319 223

    Article  CAS  Google Scholar 

  52. Atanasov M, Comba P, Hausberg S and Martin B 2009 Cyanometalate-bridged oligonuclear transition metal complexes – possibilities for a rational design of SMMs Coord. Chem. Rev. 253 2306

    Article  CAS  Google Scholar 

  53. Comba P, Hausberg S and Martin B 2009 Calculation of exchange coupling constants of transition metal complexes with DFT J. Phys. Chem. A 113 6751

    Article  CAS  PubMed  Google Scholar 

  54. Munirathnam M, Arora H, Sengupta A, Kant Shashi, Lloret F and Mukherjee R 2021 Dimeric Mn(II), Co(II), Ni(II) and Cu(II) complexes of a common carboxylate-appended (2-pyridyl)alkylamine ligand: Structure, magnetism and DFT study New J. Chem. https://doi.org/10.1039/D1NJ01150B.

    Article  Google Scholar 

  55. Barone V and Cossi M 1998 Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model J. Phys. Chem. A 102 1995

    Article  CAS  Google Scholar 

  56. Cossi M and Barone V 2001 Time-dependent density functional theory for molecules in liquid solutions J. Chem. Phys. 115 4708

    Article  CAS  Google Scholar 

  57. Cossi M, Rega N, Scalmani G and Barone V 2003 Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model J. Comput. Chem. 24 669

    Article  CAS  PubMed  Google Scholar 

  58. O’Boyle N M, Tenderholt A L and Langner K M 2008 cclib: A library for package-independent computational chemistry algorithms J. Comput. Chem. 29 839

    Article  PubMed  CAS  Google Scholar 

  59. http://www.chemcraftprog.com/ (accessed on 20 June 2020)

  60. Connelly N G and Geiger W E 1996 Chemical redox agents for organometallic chemistry Chem. Rev. 96 877

    Article  CAS  PubMed  Google Scholar 

  61. Brown S N 2012 Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal-ligand π bonding in potentially noninnocent ligands Inorg. Chem. 51 1251

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindranath Mukherjee.

Additional information

Rabindranath Mukherjee: Dedicated to (late) Professor Bhaskar G Maiya.

Special Issue on Beyond Classical Chemistry

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Sengupta, A., Lloret, F. et al. Switchover from NiIIN2O2 to NiIIN2O2S2 coordination triggered by the redox behaviour of a non-innocent 2-aminophenolate ligand. J Chem Sci 133, 110 (2021). https://doi.org/10.1007/s12039-021-01961-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01961-y

Keywords

Navigation