Skip to main content

Advertisement

Log in

Synthesis, biological evaluation and molecular docking of 3-substituted quinazoline-2,4(1H, 3H)-diones

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The quinazoline-2,4-diones scaffold is found in bioactive compounds, commercial drugs and exhibit important biological activities. However, their antidiabetic activity is rarely explored. For this purpose, an easy one-pot three-components and straightforward synthesis of 3-substituted quinazoline-2,4-diones was designed, in both, the catalyst- and solvent-free conditions under microwave irradiation. Additionally, the synthesized compounds were screened for in vitro α-amylase and α-glucosidase inhibitory activity, as well as antioxidants and cytotoxicity. The quinazoline-2,4-diones were isolated, with yields in the range of 30-65%. The compounds 3d, 3e, 3g and 3h displayed moderate activity against α-amylase and/or α-glucosidase enzymes compared with the acarbose drug. The molecular docking study revealed that all active compounds displayed a different type of intermolecular interaction in the pocked site of these enzymes. Interestingly, in the Artemia salina assay, the compound 3d exhibited a higher cytotoxic effect than 5-fluorouracil. All these results support the pharmacological potential of quinazoline-2,4-diones since all evaluated compounds behave as moderate inhibitors of the enzymes α-amylase and/or α-glucosidase.

Graphic abstract

An easy one-pot three-components and straightforward synthesis of 3-substituted quinazoline-2,4-diones was designed, in both, the catalyst- and solvent-free conditions under microwave irradiation. Moreover, the in vitro α-amylase and α-glucosidase inhibitory activity, as well as antioxidants and cytotoxicity are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2

Similar content being viewed by others

References

  1. Smith A L, Thomson C G and Leeson P D 1996 An efficient solid phase synthetic route to 1,3-disubstituted 2,4(1H,3H)-Quinazolinediones suitable for combinatorial synthesis Bioorg. Med. Chem. Lett. 6 1483

    Article  CAS  Google Scholar 

  2. Hassan M A, Younes A M M, Taha M M and Abdel-Monsef A-B H 2011 Synthesis and reactions of 3-aminotetrachloroquinazolin-2,4-dione Eur. J. Chem. 2 514

    Article  CAS  Google Scholar 

  3. Hassan M A, Seleem M A, Younes A M M, Taha M M and Abdel-Monsef A-B H 2013 Synthesis and spectral characterization of some heterocyclic nitrogen compounds Eur. J. Chem. 4 121

    Article  CAS  Google Scholar 

  4. Park Choo H-Y, Kim M, Lee S K, Woong Kim S, Kwon Chung I, Choo H-Y P, Kim M, Lee S K, Kim S W and Chung I K 2002 Solid-phase combinatorial synthesis and cytotoxicity of 3-aryl-2,4-quinazolindiones Bioorg. Med. Chem. 10 517

    Article  CAS  Google Scholar 

  5. Li Z, Huang H, Sun H, Jiang H, Liu H, Zhaoguang L, He H, Hongbin S, Hualiang J and Hong L 2008 Microwave-assisted efficient and convenient synthesis of 2,4(1H,3H)-quinazolinediones and 2-thioxoquinazolines J. Comb. Chem. 10 484

    Article  CAS  Google Scholar 

  6. Yalysheva N Z and Granik V G 1984 Unexpected formation of 2,4-quinazolinedione in the reaction of α-cyano-β-dimethylaminocrotonamide with ethyl anthranilate Chem. Heterocycl. Compd. 20 1186

    Article  Google Scholar 

  7. Gao J, He L-N, Miao C-X and Chanfreau S 2010 Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions Tetrahedron 66 4063

  8. Willis M C, Snell R H, Fletcher A J and Woodward R L 2006 Tandem palladium-catalyzed urea arylation-intramolecular ester amidation: regioselective synthesis of 3-alkylated 2,4-quinazolinediones Org. Lett. 8 5089

    Article  CAS  Google Scholar 

  9. Beylin V, Boyles D C, Curran T T, Macikenas D, Parlett R V and Vrieze D 2007 The preparation of two, preclinical amino-quinazolinediones as antibacterial agents Org. Proc Res. Dev. 11 441

    Article  CAS  Google Scholar 

  10. Davidson J S 1984 The preparation of 5-(2-aminophenyl)-1,3,4-oxadiazole-2(3H)-one and its rearrangement to 3-amino-2,4(1H,3H)-quinazolinedione Monatsh. Chem. 115 565

    Article  CAS  Google Scholar 

  11. Ryu C, Shin K, Seo J and Kim H 2002 6-Arylamino-5, 8-quinazolinediones as potent inhibitors of endothelium-dependent vasorelaxation Eur. J. Med. Chem. 37 77

    Article  CAS  Google Scholar 

  12. Havera H J 1979 Derivatives of 1,3-disubstituted 2,4(1H,3H)-quinazolinediones as possible peripheral vasodilators or antihypertensive agents J. Med. Chem. 22 1548

    Article  CAS  Google Scholar 

  13. Usifoh C O and Scriba G K E 2000 Synthesis and anticonvulsant activity of acetylenic quinazolinone derivatives Arch. Pharm. 333 261

    Article  CAS  Google Scholar 

  14. Fujimori H and Cobb D P 1965 Central nervous system depressant activity of ma1337, 3-(3-(4-m-chlorophenyl-1-piperazyl)propyl)-2,4(1H,3H)quinazolinedione hydrochloride J. Pharmacol. Exp. Ther. 148 151

    CAS  PubMed  Google Scholar 

  15. Hayao S, Havera H J, Strycker W G, Leipzig T J, Kulp R A and Hartzler H E 1965 New sedative and hypotensive 3-substituted 2,4(1H,3H)-quinazolinediones J. Med. Chem. 8 807

    Article  CAS  Google Scholar 

  16. Tran T P, Ellsworth E L, Stier M A, Domagala J M, Showalter H D, Gracheck S J, Shapiro M A, Joannides T E and Singh R 2004 Synthesis and structural-activity relationships of 3-hydroxyquinazoline-2,4-dione antibacterial agents Bioorgan. Med. Chem. Lett. 14 4405

    Article  CAS  Google Scholar 

  17. Enciso E, Sarmiento-Sánchez J I, López-Moreno H S, Ochoa-Terán A, Osuna-Martínez U and Beltrán-López E 2016 Synthesis of new quinazolin-2,4-diones as anti-Leishmania mexicana agents Mol. Divers. 20 821

    Article  CAS  Google Scholar 

  18. Ryu C-K, Shim J-Y, Yi Y-J, Choi I H, Chae M J, Han J-Y and Jung O-J 2004 Synthesis and antifungal activity of 5,8-quinazolinedione derivatives modified at positions 6 and 7 Arch. Pharm. Res. 27 990

    Article  CAS  Google Scholar 

  19. Elansary A K, Kadry H H, Ahmed E M and Sonousi A S M 2012 Design, synthesis, and biological activity of certain quinazolinedione derivatives as potent phosphodiestrase4 inhibitors Med. Chem. Res. 21 3557

    Article  CAS  Google Scholar 

  20. Kirincich S J, Xiang J, Green N, Tam S, Yang H Y, Shim J, Shen M W H H, Clark J D and McKew J C 2009 Benzhydrylquinazolinediones: Novel cytosolic phospholipase A2α inhibitors with improved physicochemical properties Bioorg. Med. Chem. 17 4383

    Article  CAS  Google Scholar 

  21. Lansdon E B, Liu Q, Leavitt S A, Balakrishnan M, Perry J K, Lancaster-Moyer K, Kutty N, Liu X, Squires N H, Watkins W J and Kirschberg T A 2011 Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors Antimicrob. Agents Chemother. 55 2905

    Article  CAS  Google Scholar 

  22. Muhammad M, Kevin R M, Arkady M, Xilin Z, Kalyan C, Robert J K, Karl D, Malik M, Marks K R, Mustaev A, Zhao X, Chavda K, Kerns R J and Drlica K 2011 Fluoroquinolone and quinazolinedione activities against wild-type and gyrase mutant strains of Mycobacterium smegmatis Antimicrob. Agents Chemother. 55 2335

    Article  Google Scholar 

  23. Kakuta H, Tanatani A, Nagasawa K and Hashimoto Y 2003 Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2,4(1H,3H)-quinazolinedione skeleton Chem. Pharm. Bull. 51 1273

    Article  CAS  Google Scholar 

  24. Park Choo H-Y, Kim M, Lee S K, Woong Kim S and Kwon Chung I 2002 Solid-phase combinatorial synthesis and cytotoxicity of 3-aryl-2,4-quinazolindiones Bioorgan. Med. Chem. 10 517

    Article  CAS  Google Scholar 

  25. DeFossa E, Kadereit D, Klabunde T, Burger H-J, Herling A, Wendt K-U, Von Roedern E and Schoenafinger K 2012 Urea- and urethane-substituted acylureas, process for their preparation and their use. Patent US7262220

  26. Clauss A, Glaess C, Marciniak G, Nave J-F and Vivet B 2010 Quinazolinedione derivatives, preparation thereof and various therapeutic uses thereof. Patent US8722659B2

  27. Moreland R J, Higgins S, Zhou A, VanStraten P, Cauthron R D, Brem M, McLarty B J, Kudo M and Canfield W M 2012 Species-specific differences in the processing of acid α-glucosidase are due to the amino acid identity at position 201 Gene 491 25

  28. Zeng Y-F, Lü Z-R, Yan L, Oh S, Yang J-M, Lee J and Ye Z M 2012 Towards alpha-glucosidase folding induced by trifluoroethanol: Kinetics and computational prediction Proc. Bio. 47 2284

    CAS  Google Scholar 

  29. Sarmiento-Sánchez J I, Montes-Avila J, Ochoa-Terán A, Delgado-Vargas F, Wilson-Corral V, Díaz-Camacho S P, García-Páez F and Bastidas-Bastidas P 2014 Synthesis of 1H-benzoxazine-2,4-diones from heterocyclic anhydrides: evaluation of antioxidant and antimicrobial activities Quim. Nova 37 1297

    Google Scholar 

  30. Sarmiento-Sánchez J I, Ochoa-Terán A and Rivero I A 2014 Synthesis and antioxidant evaluation of enantiomerically pure bis-(1,2,3-triazolylmethyl)amino esters from modified α-amino acids Sci. World J. 2014 1

    Article  Google Scholar 

  31. Montes-ávila J, Sarmiento-sánchez J I, Delgado-vargas F, Rivero I A, Díaz-camacho S P and Uribe-beltrán M 2016 Antioxidant activity and antimicrobial evaluation of 1-benzyl-1,2,3-triazole Acta Univ. 26 63

  32. López H S, Enciso J E, Ochoa-Terán A, Velazquez J I and Sarmiento J I 2016 An easy one-step synthesis of imidazolin-2-ones from phthalic anhydrides and their antioxidant evaluation Mendeleev Commun. 26 69

  33. Shestakov A S, Sidorenko O E, Bushmarinov I S, Shikhaliev K S and Antipin M Y 2009 3-aryl(alkyl)quinazoline-2,4(1H,3H)-diones and their alkyl derivatives Russ. J. Org. Chem. 45 1691

    Article  CAS  Google Scholar 

  34. Koay N and Campeau L-C 2011 Efficient preparation of 3-substituted quinazolinediones directly from anthranilic acids and isocyanates J. Heterocycl. Chem. 48 473

    Article  CAS  Google Scholar 

  35. Goldstein S, Dhainaut A, Tizot A, Fauchere J-L, Kucharczyk N, Hickman J, Pierre A, Tucker G and Kraus-Berthier L 2003 New compounds derived from Quinazoline. Patent US 2003/0199530 A1

  36. Mohammadi A A 2016 One-pot syntheses of some new 2,4-(1H,3H)-quinazolinedione derivatives in the absence of catalyst J. Heterocycl. Chem. 54 2075

    Article  Google Scholar 

  37. Papadopoulos E P and Torres C D 1982 Convenient preparation of N-substituted 2-amino-4H-3,l-benzoxazin-4-ones and 3-substituted 2,4(1H,3H)-quinazolinediones J. Heterocycl. Chem. 19 269

    Article  CAS  Google Scholar 

  38. Adisakwattana S, Ruengsamran T, Kampa P and Sompong W 2012 In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase BMC Complement. Altern. Med. 12 110

    Article  Google Scholar 

  39. Kwon Y-I, Apostolidis E and Shetty K 2008 In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension Bioresour. Technol. 99 2981

    Article  CAS  Google Scholar 

  40. Clarke G, Ting K N, Wiart C and Fry J 2013 High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest Antioxidants 2 1

    Article  CAS  Google Scholar 

  41. Michael A S, Thompson C G and Abramovitz M 1956 Artemia salina as a test organism for bioassay Science 123 464

    Article  CAS  Google Scholar 

  42. Mughal E U, Javid A, Sadiq A, Murtaza S, Zafar M N, Khan B A, Sumrra S H, Tahir M N and Khan K M 2018 Synthesis, structure-activity relationship and molecular docking studies of 3-O-flavonol glycosides as cholinesterase inhibitors Bioorgan. Med. Chem. 26 3696

    Article  CAS  Google Scholar 

  43. Ali H I, Tomita K, Akaho E, Kambara H, Miura S, Hayakawa H, Ashida N, Kawashima Y, Yamagishi T and Ikeya H 2007 Antitumor studies. Part 1: design, synthesis, antitumor activity, and AutoDock study of 2-deoxo-2-phenyl-5-deazaflavins and 2-deoxo-2-phenylflavin-5-oxides as a new class of antitumor agents Bioorgan. Med. Chem. 15 242

  44. Méndez-Cuesta C A, Méndez-Lucio O and Castillo R 2012 Homology modeling, docking and molecular dynamics of the Leishmania mexicana arginase: a description of the catalytic site useful for drug design J. Mol. Graph. Model. 38 50

    Article  Google Scholar 

  45. Tian W, Chen C, Lei X, Zhao J and Liang J 2018 CASTp 3.0: computed atlas of surface topography of proteins Nucl. Acids Res. 46 W363

  46. Rajabi S, Ramazani A, Hamidi M and Naji T 2015 Artemia salina as a model organism in toxicity assessment of nanoparticles DARU J. Pharm. Sci. 23 20

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support for this project by Consejo Nacional de Ciencia y Tecnología (SEP-CONACyT, GRANT No CB-2012-178266-Q) and Programa de Fomento y Apoyo a Proyectos de Investigación (PROFAPI2014/206) of the Universidad Autónoma de Sinaloa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulises Osuna-Martínez or Juan I Sarmiento-Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Ballardo, L., García-Páez, F., Picos-Corrales, L.A. et al. Synthesis, biological evaluation and molecular docking of 3-substituted quinazoline-2,4(1H, 3H)-diones. J Chem Sci 132, 100 (2020). https://doi.org/10.1007/s12039-020-01813-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01813-1

Keywords

Navigation