Skip to main content
Log in

Density functional benchmark studies on structure and energetics of 3d transition metal mononitrides

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We report the results of a benchmarking study on generalized gradient approximation (GGA), meta-GGA, hybrid GGA, and hybrid meta-GGA density functional theory (DFT) methods for 3d transition metal mononitrides (\(3d\hbox {-TMNs}\)). The selected DFT functionals are, B97-D, BLYP, BP91, MPW91, PBE96, PW91, M06-L, B3LYP, B97, BHandH, PBE0, M05, M05-2X, M06, M06-2X, M06-HF and TPSSh. The performances of these DFT functionals are assessed by calculating the bond distance, harmonic vibrational frequency and atomization energy of \(3d\hbox {-TMNs}\). The results are compared with the available experimental and high-level ab initio results. The calculated results show that MPW91, M06-L, and B3LYP functionals provide better results than the other functionals that are taken in this study. In general, the functionals with significant Hartree–Fock exchange show poor performance in most of the \(3d\hbox {-TMNs}\). Hence, these functionals are not recommended for the studies of structure and energetics in \(3d\hbox {-TMNs}\).

Graphical Abstract

SYNOPSIS The performance of seventeen DFT functionals for the structure and energetics of eight \(3d\hbox {-TMNs}\) are assessed. It is noted that the MPW91, M06-L, and B3LYP functionals show good performance for both structure and energetic properties of \(3d\hbox {-TMNs}\). The functionals with significant Hartree–Fock exchange show poor performance in \(3d\hbox {-TMNs}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Veillard A 1991 Ab initio calculations of transition-metal organometallics: Structure and molecular properties Chem. Rev. 91 743

    Article  CAS  Google Scholar 

  2. Wojciechowska M, Haber J, Łomnicki S and Stoch J 1999 Structure and catalytic activity of double oxide system: Cu–Cr–O supported on \(\text{ MgF }_{2}\) J. Mol. Catal. A: Chem. 141 155

    Article  CAS  Google Scholar 

  3. Rao C N R 1989 Transition metal oxides Annu. Rev. Phys. Chem. 40 291

    Article  CAS  Google Scholar 

  4. Rao C and Raveau B 1995 Transition Metal Oxides (New York, NY: VCH Publishers)

    Google Scholar 

  5. Upadhya K, Yang J M and Hoffman W P 1997 Advanced materials for ultrahigh temperature structural applications above \(2000~^{\circ }\text{ C }\) Am. Ceram. Soc. Bull. 76 51

    CAS  Google Scholar 

  6. White N M and Wing R F 1978 Photoelectric two-dimensional spectral classification of M supergiants Astrophys. J. 222 209

    Article  CAS  Google Scholar 

  7. Niewa R and DiSalvo F J 1998 Recent developments in nitride chemistry Chem. Mat. 10 2733

    Article  CAS  Google Scholar 

  8. Zhao B R, Chen L, Luo H L, Jack M D and Mullin D P 1984 Superconducting and normal-state properties of vanadium nitride Phys. Rev. B 29 6198

    Article  CAS  Google Scholar 

  9. Pierson H O 1996 Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications (New Jersey: Noyes Publications)

    Google Scholar 

  10. Matar S F, Demazeau G and Siberchicot B 1990 Magnetic particles derived from iron nitride IEEE Trans. Magn. 26 60

    Article  CAS  Google Scholar 

  11. Yashar P C and Sproul W D 1999 Nanometer scale multilayered hard coatings Vacuum 55 179

    Article  CAS  Google Scholar 

  12. Balogun M S, Huang Y, Qiu W Yang H Ji H and Tong Y 2017 Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting Mater. Today 20 425

    Article  CAS  Google Scholar 

  13. Gingerich K A 1968 Gaseous Metal Nitrides. III. On the Dissociation Energy of Thorium Mononitride and Predicted Dissociation Energies of Diatomic Group III–VI Transition-Metal Nitrides J. Chem. Phys. 49 19

    Article  CAS  Google Scholar 

  14. Ram R S and Bernath P F 1992 Fourier transform emission spectroscopy of ScN J. Chem. Phys. 96 6344

    Article  CAS  Google Scholar 

  15. Douglas A E and Veillette P M 1980 The electronic spectrum of TiN J. Chem. Phys. 72 5378

    Article  CAS  Google Scholar 

  16. Andrews L 1998 Reactions of laser-ablated first-row transition metal atoms with nitrogen: matrix infrared spectra of the MN, NMN and \((\text{ MN })_{2}\) molecules J. Electron. Spectrosc. Relat. Phenom. 97 63

    Article  CAS  Google Scholar 

  17. Johnson E L, Davis Q C and Morse M D 2016 Predissociation measurements of bond dissociation energies: VC, VN, and VS J. Chem. Phys. 144 234306

    Article  PubMed  Google Scholar 

  18. Feng-Juan B, Chuan-Lu Y, Qi Q and Ling Z 2009 The theoretical character of the \(\text{ X1 }\Sigma +\) and \(\text{ A1 }\Sigma +\) states of ScN Chin. Phys. B 18 549

    Article  Google Scholar 

  19. Harrison J F 1996 Electronic structure of the transition metal nitrides TiN, VN, and CrN J. Phys. Chem. 100 3513

    Article  CAS  Google Scholar 

  20. Yamaki T, Sekiya M and Tanaka K 2003 A theoretical study on lower electronic states of CoN Chem. Phys. Lett. 376 487

    Article  CAS  Google Scholar 

  21. Shu-Dong Zhang and Chao L 2016 Low-lying electronic states of CuN calculated by MRCI method Chin. Phys. B 25 103103

    Article  Google Scholar 

  22. Siegbahn P E M and Blomberg M R A 1984 A theoretical study of the interaction of iron and nickel with nitrogen Chem. Phys. 87 189

    Article  CAS  Google Scholar 

  23. Jansík B, Kellö V and Urban M 2002 Dipole moments calculations of transition metal mononitrides: ScN, TiN, VN, and CrN: Limits of the CCSD (T) method Int. J. Quantum Chem. 90 1240

    Article  Google Scholar 

  24. Daoudi A, Baba M F, Elkhattabi S Rogemond F and Chermette H 2003 Electronic structure and molecular spectroscopic constants of ScN and ScP investigated by several quantum chemistry methods Mol. Phys. 101 2929

    Article  CAS  Google Scholar 

  25. Chaudhari A and Lee S L 2007 Theoretical study of \(3d\)-metal mononitrides using DFT method Int. J. Quantum Chem. 107 212

    Article  CAS  Google Scholar 

  26. Wu Z 2005 Electronic structures of \(3d\)-metal mononitrides. J. Comp. Chem. 27 267

    Article  Google Scholar 

  27. Zhao Y and Truhlar D G 2006 Comparative assessment of density functional methods for 3d transition-metal chemistry J. Chem. Phys. 124 224105

    Article  PubMed  Google Scholar 

  28. Zhao Y and Truhlar D G 2006 A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions J. Chem. Phys. 125 194101

    Article  PubMed  Google Scholar 

  29. Furche F and Perdew J P 2006 The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry J. Chem. Phys. 124 044103

    Article  PubMed  Google Scholar 

  30. Cramer C J and Truhlar D G 2009 Density functional theory for transition metals and transition metal chemistry Phys. Chem. Chem. Phys. 11 10757

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Jin X, Haoyu S Y, Truhlar D G and He X 2017 Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics Proc. Natl. Acad. Sci. U.S.A. 114 8487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grimme S 2006 Semiempirical GGA-type density functional constructed with a long-range dispersion correction J. Comp. Chem. 27 1787

    Article  CAS  Google Scholar 

  33. Becke A D 1988 Density functional exchange energy approximation with correct asymptotic behaviour Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  34. Lee C, Yang W and Parr R G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

  35. Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation Phys. Rev. B 46 6671

    Article  CAS  Google Scholar 

  36. Adamo C and Barone V 1998 Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models J. Chem. Phys. 108 664

    Article  CAS  Google Scholar 

  37. Zhao Y and Truhlar D G 2005 Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions J. Phys. Chem. A 109 5656

    Article  CAS  PubMed  Google Scholar 

  38. Perdew J P, Burke K and Ernzerhof M 1996 Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 77 3865

    Article  CAS  PubMed  Google Scholar 

  39. Perdew J P, Burke K and Ernzerhof M 1997 Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] Phys. Rev. Lett. 78 1396

  40. Zhao Y, Schultz N E and Truhlar D G 2006 Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions J. Chem. Theory Comput. 2 364

    Article  PubMed  Google Scholar 

  41. Becke A D 1993 Density-functional thermochemistry III. The role of exact exchange J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  42. Becke A D 1997 Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals J. Chem. Phys. 107 8554

    Article  CAS  Google Scholar 

  43. Becke A D 1993 A new mixing of Hartree–Fock and local density-functional theories J. Chem. Phys. 98 1372

    Article  CAS  Google Scholar 

  44. Adamo C and Barone V 1999 Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 110 6158

    Article  CAS  Google Scholar 

  45. Zhao Y and Truhlar D G 2004 Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions J. Phys. Chem. A 108 6908

    Article  CAS  Google Scholar 

  46. Zhao Y and Truhlar D G 2006 Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States J. Phys. Chem. A 110 13126

    Article  CAS  PubMed  Google Scholar 

  47. Staroverov V N, Scuseria G E, Tao J M and Perdew J P 2003 Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes J. Chem. Phys. 119 12129

    Article  CAS  Google Scholar 

  48. Timmer G H and Berry J F 2012 Electrophilic aryl C–H amination by dimetal nitrides: correlating electronic structure with reactivity Chem. Sci. 3 3038

    Article  CAS  Google Scholar 

  49. Skone J H, Govoni M and Galli G 2016 Nonempirical range-separated hybrid functionals for solids and molecules Phys. Rev. B 93 235106

    Article  Google Scholar 

  50. Xu X and Truhlar D G 2011 Performance of effective core potentials for density functional calculations on \(3d\) transition metals J. Chem. Theory Comput. 8 80

    Article  PubMed  Google Scholar 

  51. Valiev M, Bylaska E J, Govind N, Kowalski K, Straatsma T P, Van Dam H J J, Wang D, Nieplocha J, Apra E and Windus T L 2010 NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations Comput. Phys. Commun. 181 1477

    Article  CAS  Google Scholar 

  52. Li C G, Zhou J C, Hu Y F Ren B Z, Bai J T, Hu X K and Yang W 2018 Computational Studies on the \(\text{ Sc }_{{\rm n}}\text{ N }_{{\rm m}}\) (\(\text{ n+m }= 10\)) Clusters: Structure, Electronic and Vibrational Properties J. Cluster Sci. 1

  53. Paranthaman S 2017 Assessment of DFT functionals in predicting bond length and atomization energy of catalytically important metal dimers Croat. Chem. Acta 90 17

    Article  Google Scholar 

  54. Andrews L, Bare W D and Chertihin G V 1997 Reactions of laser-ablated V, Cr, and Mn atoms with nitrogen atoms and molecules. Infrared spectra and density functional calculations on metal nitrides and dinitrogen complexes J. Phys. Chem. A 101 8417

    Article  CAS  Google Scholar 

  55. Chertihin G V, Andrews L and Neurock M 1996 Reactions of laser-ablated iron atoms with nitrogen atoms and molecules. Matrix infrared spectra and density functional calculations of novel iron nitride molecules J. Phys. Chem. 100 14609

    Article  CAS  Google Scholar 

  56. Yin S, Xie Y and Bernstein E R 2012 Experimental and theoretical studies of ammonia generation: Reactions of \(\text{ H }_{2}\) with neutral cobalt nitride clusters J. Chem. Phys. 137 124304

    Article  PubMed  Google Scholar 

  57. Gobbo J P and Borin A C 2006 Ground and lowest-lying electronic states of CoN. A multiconfigurational study J. Phys. Chem. A 110 13966

    Article  CAS  PubMed  Google Scholar 

  58. Daoudi A, Benjelloun A T, Flament J P and Berthier G 1999 Potential energy curves and electronic structure of Copper Nitrides CuN and CuN+ versus CuO and CuO+ J. Mol. Spectrosc. 194 8

    Article  CAS  PubMed  Google Scholar 

  59. Peter S L and Dunn T M 1989 Rotational analysis of the 7000 Å (\(A\,3\Phi \rightarrow \text{ X } 3\Delta \)) electronic emission system of diatomic vanadium mononitride (VN) J. Chem. Phys. 90 5333

    Article  CAS  Google Scholar 

  60. Balfour W J, Qian C X W and Zhou C 1997 First observation and electronic spectroscopy of chromium mononitride: The A \(4\Pi r\leftarrow \text{ X }~4\Sigma -\) transition near 745 nm J. Chem. Phys. 106 4383

    Article  CAS  Google Scholar 

  61. Simard B, Masoni C and Hackett P A 1989 Spectroscopy and photophysics of refractory molecules at low temperature: The \(\text{ d }1\Sigma +\text{-X }3\Delta 1\) intercombination system of vanadium nitride J. Mol. Spectrosc. 136 44

    Article  CAS  Google Scholar 

  62. Kunze K L and Harrison J F 1990 Electronic and geometric structures of several states of diatomic scandium nitride J. Am. Chem. Soc. 112 3812

    Article  CAS  Google Scholar 

  63. Blomberg M R A and Siegbahn P E M 1992 A comparison between multireference CI and effective medium theories for diatomic FeN Theor. Chim. Acta 81 365

    Article  CAS  Google Scholar 

  64. Zhao Y and Truhlar D G 2008 Density Functionals with Broad Applicability in Chemistry Acc. Chem. Res. 41 157

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (S.P and S.S) are thankful to the Science and Engineering Research Board (DST), Govt. of India, for the financial support in the form of the project (YSS/2015/001311). N.K.M is thankful to Kalasalingam Academy of Research and Education (Deemed to be University) for the internship through SSVIP programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvarengan Paranthaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paranthaman, S., Sampathkumar, S. & Murugasenapathi, N.K. Density functional benchmark studies on structure and energetics of 3d transition metal mononitrides. J Chem Sci 130, 164 (2018). https://doi.org/10.1007/s12039-018-1564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1564-7

Keywords

Navigation