Skip to main content

Advertisement

Log in

\({\hbox {SO}}_{3}\hbox {H}\)-functionalized magnetic \({\hbox {Fe}}_{3} {\hbox {O}}_{4}\) nanoparticles as an efficient and reusable catalyst for one-pot synthesis of \({\upalpha }\)-amino phosphonates

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Nanomagnetic \(\hbox {Fe}_{{3}} \hbox {O}_{{4}} @ \hbox {SiO}_{{2}}\hbox {-SO}_{{3}}\hbox {H}\) (\(\hbox {SO}_{{3}}\hbox {H-MNPs}\)) was prepared via grafting sulfonic acid on the silica-coated \(\hbox {Fe}_{{3}} \hbox {O}_{{4}}\) magnetite nanoparticles (MNPs). The catalytic activity of the prepared \(\hbox {SO}_{{3}}\hbox {H-MNPs}\) was probed through the one-pot synthesis of N-hydroxy-\({\upalpha }\)-amino phosphonates and \({\upalpha }\)-amino phosphonates via three-component couplings of phenylhydroxylamine or amines with aldehydes and trialkyl phosphites at room temperature. The synthesized \(\hbox {SO}_{{3}}\hbox {H-MNPs}\) were characterized by XRD, FT-IR, and SEM. The recoverability of the catalyst was achieved by a simple magnetic decantation and reused at least five times without significant degradation in catalytic activity.

Graphical Abstract

The catalytic activity of the prepared \(\hbox {SO}_{{3}}\hbox {H-MNPs}\) was probed through the one-pot synthesis of N-hydroxy-\({\upalpha }\)-amino phosphonates and \({\upalpha }\)-amino phosphonates via three-component couplings of phenylhydroxylamine or amines with aldehydes and trialkyl phosphites at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Ramakrishna K, Thomas J M and Sivasankar C 2016 A Green Approach to the Synthesis of \(\alpha \)-Amino Phosphonate in Water Medium: Carbene Insertion into the N-H Bond by Cu(I) Catalyst J. Org. Chem. 81 9826

    Article  CAS  PubMed  Google Scholar 

  2. Allen M C, Fuhrer W, Tuck B, Wade R and Wood J M 1989 Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond J. Med. Chem. 32 1652

    Article  CAS  PubMed  Google Scholar 

  3. Atherton F R, Hassal C H and Lambert R W 1986 Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid J. Med. Chem. 29 29

    Article  CAS  PubMed  Google Scholar 

  4. Meyer J H and Barlett P A 1998 Macrocyclic Inhibitors of Penicillopepsin. 1. Design, Synthesis, and Evaluation of an Inhibitor Bridged between P1 and P3 J. Am. Chem. Soc. 120 4600

    Article  CAS  Google Scholar 

  5. Miller D J, Hammond S M, Anderluzzi D and Bugg T D H 1998 Aminoalkylphosphinate inhibitors of D-Ala-D-Ala adding enzyme J. Chem. Soc. Perkin Trans. 1 131

    Article  Google Scholar 

  6. Peyman A, Stahl W, Wagner K, Ruppert D and Ruppert K H X 1994 Non-peptide-based inhibitors of human immune deficiency virus-1 protease Bioorg. Med. Chem. Lett. 4 2601

    Article  CAS  Google Scholar 

  7. Ali S A N, Ali S, Zakir S, Patel M and Farooqui M 2012 Synthesis of new \(\alpha \)-aminophosphonate system bearing Indazole moiety and their biological activity Eur. J. Med. Chem. 50 39

    Article  CAS  PubMed  Google Scholar 

  8. Maier L and Diel P J 1991 Organic phosphorus compounds 97. Synthesis and properties of 1-amino-2-aryl- and 2-pyridylethylphosphonic acids and derivatives Phosphorus, Sulfur Silicon Relat. Elem. 62 15

    Article  CAS  Google Scholar 

  9. Sobhani S and Khakzad F 2017 A novel hydrophobic copper complex supported on \(\gamma \)-Fe2O3 as a magnetically heterogeneous catalyst for one-pot three-component synthesis of \(\alpha \)-aminophosphonates Appl. Organometal. Chem. 31 e3877

    Article  CAS  Google Scholar 

  10. Nakamura Y and Ukita T 2002 Construction of Heterocyclic Compounds by Use of \(\alpha \)-Diazophosphonates:? New One-Pot Syntheses of Indoles and Isocoumarins Org. Lett. 14 2317

    Article  CAS  Google Scholar 

  11. Debrouwer W, Heugebaert T S A and Stevens C V 2014 Preparation of Tetrasubstituted 3-Phosphonopyrroles through Hydroamination: Scope and Limitations J. Org. Chem. 10 4322

    Article  CAS  Google Scholar 

  12. Cheng X, Goddard R, Buth G and List B 2008 Direct Catalytic Asymmetric Three-Component Kabachnik–Fields Reaction Angew. Chem. Int. Ed. 47 5079

    Article  CAS  Google Scholar 

  13. Zefirov N S and Matveeva E D 2008 Catalytic Kabachnik-Fields reaction: New horizons for old reaction Arkivoc part 1 1

    Google Scholar 

  14. Cherkasov R A and Galkin V I 1998 The Kabachnik–Fields reaction: Synthetic potential and the problem of the mechanism Russ. Chem. Rev. 67 857

    Article  Google Scholar 

  15. Kafarski P, Gorniak MGV and Andrasiak I 2015 Kabachink-Fields reaction under green conditions – A critical overview Curr. Green. Chem. 2 218

    Article  CAS  Google Scholar 

  16. Keglevich G and Balint E 2012 The Kabachnik-Fields Reaction: Mechanism and Synthetic Use Molecules 17 12821

    Article  CAS  PubMed  Google Scholar 

  17. Bera K, Nadkarni D and Namboothiri I N N 2013 Asymmetric synthesis of \(\gamma \gamma \)-aminophosphonates: The Bio-isosteric analogs of \(\gamma \gamma \)-aminobutyric acid J. Chem. Sci. 125 443

    Article  CAS  Google Scholar 

  18. Qian C and Huang T 1998 One-Pot Synthesis of \(\alpha \)-Amino Phosphonates from Aldehydes Using Lanthanide Triflate as a Catalyst J. Org. Chem. 63 4125

    Article  CAS  Google Scholar 

  19. Tang J, Wang T, Zhang L, Wu S and Mao D 2011 A facile synthesis of \(\alpha \)-aminophosphonates catalyzed by ytterbium perfluorooctanoate under solvent-free conditions J. Fluorine Chem. 132 102

    Article  CAS  Google Scholar 

  20. Paraskar A S and Sudalai A 2006 A novel \({\text{ Cu(OTf) }}_{2}\) mediated three component high yield synthesis of \(\alpha \)-aminophosphonates Arkivok 2006 183

    Google Scholar 

  21. Ranu B C, Hajra A and Jana U 1999 General Procedure for the Synthesis of \(\alpha \)-Amino Phosphonates from Aldehydes and Ketones Using Indium(III) Chloride as a Catalyst Org. Lett. 1 1141

    Article  CAS  Google Scholar 

  22. Xu F, Luo Y, Deng M and Shen Q 2003 One-Pot Synthesis of \(\alpha \)-Amino Phosphonates Using Samarium Diiodide as a Catalyst Precursor Eur. J. Org. Chem. 2003 4728

    Article  CAS  Google Scholar 

  23. Shamrao T D, Sandip R K, Sandeep S K, Thandankorai G S and Radha V J 2012 Choline chloride.\(\text{2ZnCl }_{{2}}\) ionic liquid: An efficient and reusable catalyst for the solvent free Kabachnik–Fields reaction Tetrahedron Lett. 53 2277

    Article  CAS  Google Scholar 

  24. Laschat S and Kunz H 1992 Carbohydrates as Chiral Templates: Stereoselective Synthesis of (R)- and (S)-\(\alpha \) Aminophosphonic Acid Derivatives Synthesis 1992 90

    Article  Google Scholar 

  25. Chandrasekhar S, Prakash S J, Jagadeshwar V and Narsihmulu C 2001 Three component coupling catalyzed by \(\text{ TaCl }_{{5}}-\text{ SiO }_{{2}}\): Synthesis of \(\alpha \)-amino phosphonates Tetrahedron Lett. 42 5561

    Article  CAS  Google Scholar 

  26. Sivala M R, Devineni S R, Golla M, Ametla V M, Pothuru G K and Chamarthi N R 2016 A heterogeneous catalyst, \(\text{ SiO }_{{2}}\)-\(\text{ ZnBr }_{{2}}\): An efficient neat access for \(\alpha \)-aminophosphonates and antimic robial activity evaluation J. Chem. Sci. 128 1303

    Article  CAS  Google Scholar 

  27. Kaboudin B and Nazari R 2001 Microwave-assisted synthesis of 1-aminoalkyl phosphonates under solvent-free conditions Tetrahedron Lett. 42 8211

    Article  CAS  Google Scholar 

  28. Bhagat S and Chakraborti A K 2007 An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik-Fields Reaction) for the Synthesis of \(\alpha \)-Aminophosphonates Catalyzed by Magnesium Perchlorate J. Org. Chem. 72 1263

    Article  CAS  PubMed  Google Scholar 

  29. Heydari A, Zarei M, Alijanianzadeh R and Tavakol H 2001 One-pot synthesis of N-trimethylsilyloxy-\(\alpha \)-amino phosphonates from aldehydes using lithium perchlorate/diethyl ether as a catalyst Tetrahedron Lett. 42 3629

    Article  CAS  Google Scholar 

  30. Gallardo-Macias R and Nakayama K 2010 Tin(II) Compounds as Catalysts for the Kabachnik-Fields Reaction under Solvent-Free Conditions: Facile Synthesis of \(\alpha \)-Aminophosphonates Synthesis 1 57

    Google Scholar 

  31. Akiyama T, Sanada M and Fuchibe K 2003 Brønsted Acid-Mediated Synthesis of \(\alpha \)-Amino Phosphonates under Solvent-Free Conditions Synlett 10 1463

    Article  Google Scholar 

  32. Manabe K and Kobayashi S 2000 Facile synthesis of \(\alpha \)-aminophosphonates in water using a Lewis acid–surfactant-combined catalyst Chem. Commun. 0 669

  33. Ha H J and Nam G S 1992 Expedient Synthesis of \(\alpha \)-Substituted \(\alpha \), \(\beta \)- Unsaturated \(\gamma \)-Amino Acids (Dipeptide Mimetics); Wittig Reaction of \(\alpha \)-Amino Aldehydes with \(\alpha \)- Substituted Alkoxycarbonyl Phosphoranes Synth. Commun. 22 1143

    Article  CAS  Google Scholar 

  34. Mohammadian E, Ghafuri H and Kakanejadifard A 2017 A new procedure for synthesis of \(\alpha \)-aminophosphonates by aqueous formic acid as an effective and environment-friendly organocatalyst J. Chem. Sci. 129 1883

    Article  CAS  Google Scholar 

  35. Vahdat S M, Baharfar R, Tajbakhsh M, Heydari A, Baghbanian S M and Khaksar S 2008 Organocatalytic synthesis of \(\alpha \)-hydroxy and \(\alpha \)-aminophosphonates Tetrahedron Lett. 49 6501

    Article  CAS  Google Scholar 

  36. Dindulkar S D, Reddy M V and Jeong V T 2012 Cd \((\text{ ClO }_{4})_{2} \cdot \text{ xH }_{{2}}\text{ O }\) as a novel catalyst for the synthesis of \(\alpha \)-aminophosphonates under solvent-free conditions Catal. Commun. 17 114

    Article  CAS  Google Scholar 

  37. Reddy C B, Kumar K S, Kumar M A, Reddy M V N, Krishna B S, Naveen M, Arunasree M K, Reddy C S, Raju C N and Reddy C D E 2012 PEG-\(\text{ SO }_{{3}}\text{ H }\) catalyzed synthesis and cytotoxicity of \(\alpha \)-aminophosphonates Eur. J. Med. Chem. 47 553

    Article  CAS  PubMed  Google Scholar 

  38. Joshi R S, Mandhane P G, Dabhade S K and Gill C H 2010 Potassium dihydrogen phosphate: An inexpensive reagent for the solvent-free, One-pot synthesis of \(\alpha \)-aminophosphonates Green Chem. Lett. Rev. 3 191

    Article  CAS  Google Scholar 

  39. Hamadi H, Kooti M, Afshari M, Ghiasifar Z and Adibpour N 2013 Magnetic nanoparticle supported polyoxometalate: An efficient and reusable catalyst for solvent-free synthesis of \(\alpha \)-aminophosphonates J. Mol. Catal. A: Chem. 373 25

    Article  CAS  Google Scholar 

  40. AhmadDar B, Chakraborty A, Sharma P R, Shrivastava V, Bhowmik A, Vyas D, Bhatti P, Sharma M and Singh B 2013 Grinding-induced rapid, Convenient and solvent free approach for the one pot synthesis of \(\alpha \)-aminophosphonates using aluminium pillared interlayered clay catalyst J. Ind. Eng. Chem. 19 732

    Article  CAS  Google Scholar 

  41. Malamiri F and Khaksar S 2014 Pentafluorophenylammonium triflate (PFPAT): A new organocatalyst for the one-pot three-component synthesis of \(\alpha \)-aminophosphonates J. Chem. Sci. 126 807

    Article  CAS  Google Scholar 

  42. Kumar K S, Krishna B S, Reddy C B, Reddy M V N and Reddy C S 2017 Solvent-free synthesis of \(\alpha \)-aminophosphonates: Cellulose-\(\text{ SO }_{{3}}\text{ H }\) as an efficient catalyst Arab. J. Chem. 10 S368

    Article  CAS  Google Scholar 

  43. Goulioukina N S, Shergold I A, Bondarenko G N, Ilyin M M, Davankov V A and Beletskaya I P 2012 Palladium-Catalyzed Asymmetric Hydrogenation of N-Hydroxy-\(\alpha \)-imino Phosphonates Using Brønsted Acid as Activator: The First Catalytic Enantioselective Approach to Chiral N-Hydroxy-\(\alpha \)-amino Phosphonates Adv. Synth. Catal. 345 2727

    Article  CAS  Google Scholar 

  44. Gouverneure V and Lalloz M H 1996 N-Hydroxy-\(\alpha \)-amino phosphonate derivatives as potential haptens for eliciting catalytic antibodies Tetrahedron Lett. 37 6331

    Article  Google Scholar 

  45. Hubber R and Vasella A 1990 The kinetic anomeric effect. Additions of nucleophiles and of dipolarophiles to N-glycosylnitrones and to N-pseudoglycosylnitrones Tetrahedron 46 33

    Article  Google Scholar 

  46. De Risi C, Dondoni A, Perroneb D and Pollinia G P 2001 O-Silyl triflate-promoted addition of diethyl phosphite to chiral aldonitrones. A rapid access to complex \(\alpha \)-amino phosphonates and their N-hydroxy derivatives Tetrahedron Lett. 42 3033

    Article  Google Scholar 

  47. Yadav J S, Reddy B V S and Sreedhar P 2003 Three-Component One-Pot Synthesis of \(\alpha \)-Hydroxylamino Phosphonates Using Ionic Liquids Adv. Synth. Catal. 34 564

    Article  CAS  Google Scholar 

  48. Lim C W and Lee I S 2010 Magnetically recyclable nanocatalyst systems for the organic reactions Nano Today 5 412

    Article  CAS  Google Scholar 

  49. Shylesh S, Schunemann V and Thiel W R 2010 Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis Angew. Chem. Int. Ed. 49 3428

    Article  CAS  Google Scholar 

  50. Riente P, Mendoza C and Pericas M A 2011 Functionalization of \(\text{ Fe }_{{3}} \text{ O }_{{4}}\) magnetic nanoparticlesfor organocatalytic Michael reactions J. Mater. Chem. 21 7350

    Article  CAS  Google Scholar 

  51. Abu-Rezig R, Alper H, Wang D and Post M L 2006 Metal Supported on Dendronized Magnetic Nanoparticles:? Highly Selective Hydroformylation Catalysts J. Am. Chem. Soc. 128 5279

    Article  CAS  Google Scholar 

  52. Kiasat A R and Davarpanah J 2013 \(\text{ Fe }_{{3}} \text{ O }_{{4}}\)@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones J. Mol. Catal. A: Chem. 373 46

    Article  CAS  Google Scholar 

  53. Kiasat A R and Davarpanah 2015 \(\text{ Fe }_{{3}} \text{ O }_{{4}}\)@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: Synthesis, Characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions Res. Chem. Intermed. 41 2991

    Article  CAS  Google Scholar 

  54. Ghasemzadeh M A and Azimi-Nasrabad M 2016 Nano-\(\text{ Fe }_{{3}} \text{ O }_{{4}}\) -encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for the green and efficient synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-dione derivatives Res. Chem. Intermed. 42 1057

    Article  CAS  Google Scholar 

  55. Bhattacharya A K and Rana K C 2008 Amberlite-IR 120 catalyzed three-component synthesis of \(\alpha \)-amino phosphonates in one-pot Tetrahedron Lett. 49 2598

    Article  CAS  Google Scholar 

  56. Wu J, Sun W, Xia H G and Sun X 2006 A facile and highly efficient route to \(\alpha \)-amino phosphonates via three-component reactions catalyzed by \(\text{ Mg } (\text{ ClO }_{4})_{2}\) or molecular iodine Org. Biomol. Chem. 4 1663

    Article  CAS  PubMed  Google Scholar 

  57. Yan Y, Li S, Ou Y, Ji Y, Yu Z, Liu L, Yan C, Zhang Y and Zhao Y 2014 Effects of pressure and deposition time on the characteristics of \(\text{ In }_{{2}} \text{ Se }_{{3}}\) films grown by magnetron sputtering Electron. Mater. Lett. 10 1093

    Article  CAS  Google Scholar 

  58. Azad S, Sadeghi E, Parvizi R and Mazaheri A 2017 Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods Mater. Sci. Semicond. Process. 66 200

    Article  CAS  Google Scholar 

  59. Ingham B and Toney M F 2014 X-ray diffraction for characterizing metallic films In Metallic Films for Electronic, Optical and Magnetic Applications Katayun Barmak and Kevin Coffey (Eds.) \(1^{{\rm st}}\) edn. (Cambridge: Woodhead Publishing) p. 3

Download references

Acknowledgements

The authors thank Shahid Chamran University of Ahvaz for financial support (Grant No. 31400.02.3.95).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Hamadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 664 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadi, H., Norouzi, M. \({\hbox {SO}}_{3}\hbox {H}\)-functionalized magnetic \({\hbox {Fe}}_{3} {\hbox {O}}_{4}\) nanoparticles as an efficient and reusable catalyst for one-pot synthesis of \({\upalpha }\)-amino phosphonates. J Chem Sci 130, 128 (2018). https://doi.org/10.1007/s12039-018-1530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1530-4

Keywords

Navigation