Skip to main content
Log in

Reactions of 4-diphenylphosphino benzoic acid with organotin oxides and -oxy-hydroxide

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The reactions of p-diphenylphosphinobenzoic acid (LCOOH) with various organotin precursors have been carried out. Accordingly, the reaction of \([n\hbox {-BuSn(O)}(\hbox {OH}]_{\mathrm{n}}\) with LCOOH afforded the hexameric compound, \([n\hbox {-BuSn(O)O}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-PPh}_{2}]_{6}\) (1). On the other hand, the reaction of LCOOH with \([n\hbox {-Bu}_{2}\hbox {SnO}]_{\mathrm{n}}\) gave the tetrameric compound \([\{{n}\hbox {-Bu}_{2}\hbox {SnO}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-PPh}_{2}\}_{2}\hbox {O}]_{2}\) (2). The 1-D coordination polymers \([\hbox {R}_{3}\hbox {SnO}_{2}\hbox {C}\)\(\hbox {C}_{6}\hbox {H}_{4}\)\(p\hbox {-}\hbox {P(O)Ph}_{2}]_{\mathrm{n}}\), \([\hbox {R} = n\hbox {-Bu}\) (3), \(\hbox {R} = \hbox {Ph}\) (4)] were prepared in the reaction of \([n\hbox {-Bu}_{3}\hbox {Sn}]_{2}\hbox {O}\) or \([\hbox {Ph}_{3}\hbox {Sn}]_{2}\hbox {O}\) with LCOOH. The compounds 14 were structurally characterized by multinuclear NMR spectroscopic and single crystal X-ray diffraction studies.

Graphical Abstract

SYNOPSIS The reactions of p-diphenylphosphinobenzoic acid with various organotin precursors have been shown to afford hexameric compound 1, tetrameric compound 2 and 1-D polymeric compounds 3 and 4. The compounds 14 were structurally characterized by multinuclear NMR spectroscopic and single crystal X-ray diffraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amouri H, Desmarets C and Moussa J 2012 Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration Chem. Rev. 112 2015

    Article  CAS  PubMed  Google Scholar 

  2. Roesky HW, Haiduc I and Hosmane NS 2003 Organometallic Oxides of Main Group and Transition Elements Downsizing Inorganic Solids to Small Molecular Fragments Chem. Rev. 103 2579

    Article  CAS  PubMed  Google Scholar 

  3. Chandrasekhar V, Nagendran S and Baskar V 2002 Organotin assemblies containing Sn-O bonds Coord. Chem. Rev. 235 1

    Article  CAS  Google Scholar 

  4. García-Zarracino R and Höpfl H 2005 Self-Assembly of Diorganotin(IV) Oxides (R = Me, \(n\)Bu, Ph) and 2,5-Pyridinedicarboxylic Acid to Polymeric and Trinuclear Macrocyclic Hybrids with Porous Solid-State Structures: Influence of Substituents and Solvent on the Supramolecular Structure J. Am. Chem. Soc.  127 3120

    Article  CAS  PubMed  Google Scholar 

  5. Beckmann J, Dakternieks D, Duthie A, Lewcenko N A and Mitchell C 2004 Carbon dioxide fixation by the cooperative effect of organotin and organotellurium oxides Angew. Chem. Int. Ed. 43 6683

    Article  CAS  Google Scholar 

  6. Ma C and Sun J 2004 A novel self-assembling synthesis and crystal structure of 40-membered macrocyclic complex containing eight-tin Dalton Trans. 1785

  7. Chandrasekhar V, Gopal K and Thilagar P 2007 Nanodimensional Organostannoxane Molecular Assemblies Acc. Chem. Res. 40 420

    Article  CAS  PubMed  Google Scholar 

  8. Delavaux-Nicot, B, Kaeser A, Hahn U, Gegout A, Brandli P E, Duhayon C, Coppel Y, Saquet A and Nierengarten J-F 2008 Organotin chemistry for the preparation of fullerene-rich nanostructures J. Mater. Chem. 18 1547

    Article  CAS  Google Scholar 

  9. Kundu S, Chakraborty A, Mondal K and Chandrasekhar V 2014 Multi-Ruthenocene Assemblies on an Organostannoxane Platform. Supramolecular Signatures and Conversion to (Ru-Sn)\(\text{ O }_{2}\) Cryst. Growth Des. 14 861

    Article  CAS  Google Scholar 

  10. Kundu S, Metre R K, Yadav R, Sen P and Chandrasekhar V 2014 Multi-Pyrene Assemblies Supported on Stannoxane Frameworks: Synthesis, Structure and Photophysical Studies Chem. Asian J. 9 1403

    Article  CAS  PubMed  Google Scholar 

  11. Chandrasekhar V, Thilagar P and Sasikumar P 2006 Multi-site coordination ligands assembled on organostannoxane supports J. Organomet. Chem.  691 1681

    Article  CAS  Google Scholar 

  12. Chandrasekhar V, Kundu S, Kumar J, Verma S, Gopal K, Chaturbedi A and Subramaniam K 2013 Supramolecular Signatures of Adenine-Containing Organostannoxane Assemblies Cryst. Growth Des. 13 1665

    Article  CAS  Google Scholar 

  13. Chandrasekhar V, Narayanan R S and Thilagar P 2009 Organostannoxane-Supported Palladium Nanoparticles. Highly Efficient Catalysts for Suzuki-Coupling Reactions Organometallics 28 5883

    Article  CAS  Google Scholar 

  14. Chandrasekhar V and Narayanan R S 2011 Organostannoxane-supported Pd(0) nanoparticles as efficient catalysts for Heck-coupling reactions Tetrahedron Lett. 52 3527

    Article  CAS  Google Scholar 

  15. Chandrasekhar V and Narayanan R S 2013 Organostannoxane-supported Pd(0) nanoparticles as an efficient catalytic system for alkyne dimerization Ind. J. Chem. 52A 1066

    CAS  Google Scholar 

  16. International Tables for X-Ray Crystallography 1952 Vol. III. (Birmingham: Kynoch Press)

  17. Sheldrick G M 1999 In SAINT+, version 6.02 (Madison: Bruker AXS)

  18. Sheldrick G M 1997 In SADABS, Empirical Absorption Correction Program (Germany: University of Göttingen)

    Google Scholar 

  19. CrysAlis PRO. 2014 (Yarnton, Oxfordshire: Agilent Technologies Ltd)

  20. Sheldrick G M 2015 SHELXT – Integrated space-group and crystal-structure determination Acta Cryst. A71 3

    Google Scholar 

  21. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C71 3

    Google Scholar 

  22. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: a complete structure solution, refinement and analysis program J. Appl. Crystallogr. 42 339

    Article  CAS  Google Scholar 

  23. Muller P 2006 In Crystal Structure Refinement: A Crystallographer’s guide to SHELXL (New York: International Union of Crystallography and Oxford University Press) p.59.

  24. Brandenburg K 2014 DIAMOND Version 3.2k, (Bonn: Crystal Impact GbR).

Download references

Acknowledgements

This work is supported by the Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana, India. VC is thankful to the Department of Science and Technology for a J. C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vadapalli Chandrasekhar or Anukul Jana.

Additional information

Special Issue on Modern Trends in Inorganic Chemistry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, R.S., Thilagar, P., Acharya, J. et al. Reactions of 4-diphenylphosphino benzoic acid with organotin oxides and -oxy-hydroxide. J Chem Sci 130, 92 (2018). https://doi.org/10.1007/s12039-018-1493-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1493-5

Keywords

Navigation