Oxidative Dehydrogenation (ODH) of Ethylbenzene with \(\hbox {CO}_{2}\) and \(\hbox {N}_{2}\hbox {O}\) over Heteropolycompounds

  • Salem Cheknoun
  • Sadia Mansouri
  • Ouarda Benlounes
  • Smain Hocine
Regular Article


Heteropolyacids of Keggin structure, \(\hbox {H}_{3}\hbox {PMo}_{12}\hbox {O}_{40}\), \(\hbox {H}_{3}\hbox {PMo}_{11}\hbox {WO}_{40}\) and the salts \(\hbox {K}_{3}\hbox {PMo}_{11}\hbox {WO}_{40}\) and \(\hbox {K}_{2.5}\hbox {Fe}_{0.08}\hbox {H}_{0.26}\hbox {PMo}_{11}\hbox {WO}_{40}\) were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy, Fourier transform infrared (FTIR), low-temperature nitrogen adsorption and \(^{31}\)P MAS NMR spectroscopy. The acid-base properties were evaluated using the isopropanol decomposition. They were tested in oxidative dehydrogenation (ODH) of ethylbenzene in the temperature range 300–400 \(^{\circ }\hbox {C}\) at atmospheric pressure with the mild oxidants carbon dioxide and nitrous oxide, the major actors in the greenhouse effect. The results show that the best compromise between conversion and selectivity is obtained for the mixed K/Fe salt of \(\hbox {PMo}_{11}\hbox {WO}_{40}\) at a relatively low temperature, namely \(350^{\circ }\hbox {C}\).

Graphical Abstract

Synopsis:Heteropolycompounds of Keggin structure catalysed oxidative dehydrogenation of ethylbenzene with high selectivity to styrene. It was noted that acidic properties of the catalytic system, reaction conditions and catalyst composition affect the oxidative dehydrogenation reaction.


Ethylbenzene oxidative dehydrogenation \(\hbox {CO}_{2}\) \(\hbox {N}_{2}\hbox {O}\) heteropolycompounds 


Supplementary material

12039_2018_1447_MOESM1_ESM.docx (794 kb)
Supplementary material 1 (docx 794 KB)


  1. 1.
    Dimitratos N and Védrine J C 2003 Role of acid and redox properties on propane oxidative dehydrogenation over polyoxometalates Appl. Catal. 81 561Google Scholar
  2. 2.
    Nowinska K, Wacław A, Sopa M and Klak M 2002 Heteropoly compounds as precursors of catalysts for oxydehydrogenation of ethane Catal. Lett. 78 347Google Scholar
  3. 3.
    Mizuno N, Tateishi M and Iwamoto M Pronounced Catalytic Activity of \(\text{Fe}_{0.08}\text{ Cs }_{2.5}\text{ H }_{1.26}\text{ PMo }_{11}\text{ V }\text{ O }_{40}\) for Direct Oxidation of Propane into Acrylic Acid 1995 Appl. Catal. A: Gen. 128 165Google Scholar
  4. 4.
    Langpape M, Millet J-M M, Ozkan U S and Delichère P 1999 Study of Cesium or Cesium Transition Metal-Substituted Keggin-Type Phosphomolybdic Acid as Isobutane Oxidation Catalysts: II. Redox and Catalytic Properties J. Catal. 182 148Google Scholar
  5. 5.
    Min J-S and Mizuno N 2001 Effects of additives on catalytic performance of heteropoly compounds for selective oxidation of light alkanes Catal. Today  71 89CrossRefGoogle Scholar
  6. 6.
    Shilov A E and Shulpin G B 1997 Activation of C-H Bonds by Metal Complexes Chem. Rev.  97 2879Google Scholar
  7. 7.
    Liu S, Chen L, Wang G, Liu J, Gao Y, Li C and Shan H 2016 Effects of Cs-substitution and partial reduction on catalytic performance of Keggin-type phosphomolybdic polyoxometalates for selective oxidation of isobutene J. Energy Chem. 25  85CrossRefGoogle Scholar
  8. 8.
    Ma B, Zhang Z, Song W, Xue X, Yu Y, Zhao Z and Ding Y 2013 Solvent-free selective oxidation of C H bonds of toluene and substituted toluene to aldehydes by vanadium-substituted polyoxometalate catalyst J. Mol. Catal. A: Chem.  368 152CrossRefGoogle Scholar
  9. 9.
    Zhang J, Sun M, Cao C, Zhang Q, Wang Y and Wan H 2010 Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane Appl. Catal. A: Gen.  380 87CrossRefGoogle Scholar
  10. 10.
    Sri Hari Kumar A, Upendar K, Qiao A, Rao P S N, Lingaiah N, Kalevaru V N, Martin A, Sailu C and Sai Prasad P S 2013 Selective oxidative dehydrogenation of ethane over \(\text{ MoO }_{3}/\text{ V }_{2}\text{ O }_{5}\)\(\text{ Al }_{2}\text{ O }_{3}\) catalysts: Heteropolymolybdate as a precursor for \(\text{ MoO }_{3}\) Catal. Commun.  33  76Google Scholar
  11. 11.
    Woodle G B 2005 Ethylbenzene In Encyclopedia of Chemical Processing Vol. 1 Sunggyu Lee (Ed.) (New York, USA: CRC Press)Google Scholar
  12. 12.
    Cavani F and Trifiro F 1995 Alternative processes for the production of styrene Appl. Catal. A Gen.  133 219CrossRefGoogle Scholar
  13. 13.
    Oganowski W, Hanuza J, Drulis H, Migta W and Macalik L 1996 Promotional effect of molybdenum, chromium and cobalt on a V-Mg-O catalyst in oxidative dehydrogenation of ethylbenzene to styrene Appl. Catal. A: Gen.  136 143CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Zhao Z and Xu C 2005 Research advances in the catalysts for the selective oxidation of ethane to aldehydes Chin. Sci. Bull. 50 833CrossRefGoogle Scholar
  15. 15.
    Bulánek R and Novoveská K 2003 Oxidative dehydrogenation of propane by nitrous oxide and/or oxygen over Co beta zeolite React. Kinet. Catal. Lett. 80 337CrossRefGoogle Scholar
  16. 16.
    Nakagawa K, Okumura K, Shimamura T, Ikenaga N, Suzuki T, Kobayashi T, Nishitani-Gamo M and Ando T 2003 Novel selective oxidation of light alkanes using carbon dioxide, Oxidized diamond as a novel catalytic medium Chem. Lett.  32 866Google Scholar
  17. 17.
    Ramudu P, Anand N, Mohan V, Murali D G, Sai Pasad P S, David R B and Seetha R R K 2015 Studies on ethylbenzene dehydrogenation with \(\text{ CO }_{2}\) as soft oxidant over Co\(_{3}\text{ O }_{4}\)/COK-12 catalysts J. Chem. Sci.  127 701CrossRefGoogle Scholar
  18. 18.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R and Thouvenot R 1983 Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum (VI) and tungsten (VI) compounds related to the Keggin structure Inorg. Chem. 22 207CrossRefGoogle Scholar
  19. 19.
    Misono M, Mizuno N, Katamura K, Kasai A, Konishi Y, Sakata K and Yoneda Y 1982 Catalysis by Heteropoly Compounds. III. The Structure and Properties of 12-Heteropolyacids of Molybdenum and Tungsten (\(\text{ H }_{3}\text{ PMo }_{12-x}\text{ W }_{x}\text{ O }_{40})\) and Their Salts Pertinent to Heterogeneous Catalysis B. Chem. Soc. Jpn. 55  400CrossRefGoogle Scholar
  20. 20.
    Jing F, Katryniok B, Bordes-Richard E and Paul S 2013 Improvement of the catalytic performance of supported (\(\text{ NH }_{4})_{3}\text{ HPMo }_{11}\text{ V }\text{ O }_{40}\) catalysts in isobutane selective oxidation Catal. Today  203 32CrossRefGoogle Scholar
  21. 21.
    Mizuno N, Tateishi M and Iwamoto M 1994 Enhancement of Catalytic Activity of \(\text{ Cs }_{2.5}\text{ Ni }_{0.08}\text{ H }_{0}\).\(_{34}\text{ PMo }_{12}\text{ O }_{40}\) by \(\text{ V }^{5+}\) Substitution for Oxidation of Isobutane into Methacrylic Acid Appl. Catal. A Gen. 118 1Google Scholar
  22. 22.
    Essayem N, Coudurier G, Fournier M and Védrine J 1995 Acidic and catalytic properties of \(\text{ Cs }_{{\rm x}}\text{ H }_{{\rm 3-x}}\text{ PW }_{l2}\text{ O }_{40}\) heteropolyacid compounds Catal. Lett. 34 223Google Scholar
  23. 23.
    Gayraud P Y, Stewart I H, Derouane-Abd Hamid S B, Essayem N, Derouane E G and Védrine J C 2000 Performance of potassium 12-tungstophosphoric salts as catalysts for isobutane/butene alkylation in subcritical and supercritical phases Catal. Today  63 223CrossRefGoogle Scholar
  24. 24.
    Okuhara T 1996 Catalytic Chemistry of Heteropoly Compounds Adv. Catal.  41 113Google Scholar
  25. 25.
    Youn M H, Kim H, Jung J C, Song I K, Barteau K P. Barteau M A 2005 UV–vis spectroscopy studies of \(\text{ H }_{3}\text{ PMo }_{{\rm 12-x}}\text{ W }_{{\rm x}}\text{ O }_{40}\) heteropolyacid (HPA) catalysts in the solid state: Effects of water content and polyatom substitution J. Mol. Catal. A: Chem.  241 227CrossRefGoogle Scholar
  26. 26.
    Goubin F, Guénée L, Deniard P, Koo H J, Whangbo M H, Montardi Y and Jobic S 2004 Synthesis, optical proprieties and electronic structures of polyoxometalates \(\text{ K }_{3}\text{ PMo }_{{\rm 12-x}}\text{ W }_{{\rm x}}\) J. Solid State Chem. 177 4528CrossRefGoogle Scholar
  27. 27.
    Tadaharu U, Takashi T and Masashi H 2004 \(^{31}\)P NMR and Raman spectroscopic and voltammetric studies on the formation and conversion processes of Keggin-type molybdotungstophosphate(V) and arsenate(V) complexes in aqueous-organic solvents Inorg. Chim. Acta  357 59Google Scholar
  28. 28.
    Gervasini, A Fenyvesi J and Auroux A 1997 Study ofthe acidic character ofmodified metal oxide surfaces using the test of isopropanol decomposition Catal. Lett. 43 219Google Scholar
  29. 29.
    Ai M and Suzuki S 1973 Oxidation Activity and Acidity of Mo\(\text{ O }_{3}\)-\(\text{ P }_{2}\text{ O }_{5 }\)Catalysts J. Catal. 30 362CrossRefGoogle Scholar
  30. 30.
    Mars P and van Krevelen D W 1954 Oxidations carried out by means of vanadium oxide catalysts Chem. Eng. Sci. 3 41CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Salem Cheknoun
    • 1
  • Sadia Mansouri
    • 1
  • Ouarda Benlounes
    • 1
  • Smain Hocine
    • 1
  1. 1.Laboratoire de Chimie Appliquée et de Génie ChimiqueUniversité M. Mammeri de Tizi-OuzouTizi-OuzouAlgeria

Personalised recommendations