Skip to main content
Log in

Coupling of nitrobenzene hydrogenation and 1, 4-butanediol dehydrogenation for the simultaneous synthesis of aniline and γ-butyrolactone over copper-based catalysts

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study examined the role of the support material on the coupling of 1,4-butanediol (BDO) dehydrogenation and nitrobenzene (NB) hydrogenation over copper-based catalysts. The catalysts, 10Cu/MgO (10CM), 10Cu/Al2O3 (10CA), 10Cu/MgO-Al2O3 (10CMA), and 10Cu/SiO2 (10CS), were prepared using the impregnation method. The coupling reaction results conducted at 250 °C were compared with those of the individual reactions. The individual BDO dehydrogenation to γ-butyrolactone (GBL) conversion (99%) and hydrogenation of NB to aniline (AN) conversion (85 %) were high over 10CS. In contrast, 10CA produced tetrahydrofuran (THF) as a major product from BDO. Interestingly, the coupling process over the 10CM catalyst produced the best performance in converting NB (65%) to AN (99%) and BDO (85%) to GBL (99%). The superior performance of Cu/MgO in coupling process catalyst is mainly due to the high hydrogen adsorption ability compared to the other catalysts under limited hydrogen environments, which helps retain the active hydrogen on the catalyst surface for a longer time. The characterization of the catalysts showed that a high basic nature and the optimal amount of active copper sites (Cu0/Cu1+) are responsible for the best performance of 10CM, followed by 10CS and 10CMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. R. Kannapu, C. A. Mullen, Y. Elkasabi and A. A. Boateng, Fuel Process. Technol., 137, 220 (2015).

    Article  Google Scholar 

  2. F. Zhao, Y. Ikushima and M. Arai, J. Catal., 224, 479 (2004).

    Article  CAS  Google Scholar 

  3. C. S. Couto, L. M. Madeira, C. P. Nunes and P. Araujo, Chem. Eng. Technol., 38(9), 1625 (2015).

    Article  CAS  Google Scholar 

  4. J. Wang, Z. Yuan, R. Nie, Z. Hou and X. Zheng, Ind. Eng. Chem. Res., 49, 4664 (2010).

    Article  CAS  Google Scholar 

  5. X. Sun, O.-S. Alma I. O. Dmitrii, J. V. R. Maria, K. Freek and G. Jorge, J. Catal., 357, 20 (2018).

    Article  Google Scholar 

  6. H. P. R. Kannapu, R. Rahul, S. S. V. Reddy, D. R. Burri and K. S. Rama Rao, Catal Commun., 10, 879 (2009).

    Article  Google Scholar 

  7. T. W. Kim, M. Kim, S. K. Kim, Y. N. Choi, M. Jung, H. Oh and Y.-W. Suh, Appl. Catal. B: Environ., 286, 119889 (2021).

    Article  CAS  Google Scholar 

  8. D. W. Hwang, P. Kashinathan, J. M. Lee, J. H. Lee, U. Lee, J.-S. Hwang, Y. K. Hwanga and J.-S. Chang, Green Chem., 13, 1672 (2011).

    Article  CAS  Google Scholar 

  9. K. H. P. Reddy, Y.-W. Suh, A. Narani, D. R. Burri and K. S. R. Rao, Catal. Lett., 147, 90 (2017).

    Article  Google Scholar 

  10. U. G. Hong, H. W. Park, J. Lee, S. Hwang and I. K. Song, J. Ind. Eng. Chem., 18, 462 (2012).

    Article  CAS  Google Scholar 

  11. H. Jeong, T. H. Kim, K. I. Kim and S. H. Cho, Fuel Process Technol., 87, 497 (2006).

    Article  CAS  Google Scholar 

  12. G. Dezhi, F. Yonghai, Y. Hengbo, W. Aili and J. Tingshun, Chem. Eng. J., 233, 349 (2013).

    Article  Google Scholar 

  13. A. Kuksal, E. Klemm and G. Emig, Stud. Surf. Sci. Catal., 130, 2111 (2000).

    Article  Google Scholar 

  14. S. Satoshi, I. Jun and Y. Yasuhiro, Appl. Catal. A: Gen., 453, 213 (2013).

    Article  Google Scholar 

  15. M. Li, Y. Hao, C.-L. Fernando, H. H. P. Yiu and A. K. Mark, Top Catal., 58, 149 (2015).

    Article  CAS  Google Scholar 

  16. Z. Jian, S. Kai, A. Zhe, Z. Yanru, S. Xin, S. Hongyan, X. Xu and H. Jing, Ind. Eng. Chem. Res., 59, 3342 (2020).

    Article  Google Scholar 

  17. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras and F. J. Urbano, J. Catal., 161, 829 (1996).

    Article  CAS  Google Scholar 

  18. H. Ren, C.-H. Xu, H.-Y. Zhao, Y.-X. Wang, J. Liu and J.-Y. Liu, J. Ind. Eng. Chem., 28, 261 (2015).

    Article  CAS  Google Scholar 

  19. B. S. Coluccia, F. Boccuzzi, G. Ghiotti and C. Morterr, J. Chem. Soc., Faraday Trans., I, 78, 2111 (1982).

    Article  CAS  Google Scholar 

  20. G. Wu, J. Zhang, Y. Wu, Q. Li, K. Chou and X. Bao, J. Alloys Compd., 480, 788 (2009).

    Article  CAS  Google Scholar 

  21. V. Mohan, C. V. Pramod, M. Suresh, K. Hari Prasad Reddy, B. David Raju and K. S. Rama Rao, Catal. Commun., 18, 89 (2012).

    Article  CAS  Google Scholar 

  22. G. Lee, J. Y. Kang, N. Yan, Y.-W. Suh and J. C. Jung, J. Mol. Catal. A: Chem., 423, 347 (2016).

    Article  CAS  Google Scholar 

  23. H. P. R. Kannapu, N. C. K. Prasad, K. S. R. Rao, V. N. Kalevaru, A. Martin and D. R. Burri, Catal. Sci. Technol., 6, 5494 (2016).

    Article  CAS  Google Scholar 

  24. N. Takezawa, C. Hanamaki and H. Kobayashi, J. Catal., 38, 101 (1975).

    Article  Google Scholar 

  25. E. Hemo, R. Virduk, M. V. Landau and M. Herskowitz, Chem. Eng. Trans., 21, 1243 (2010).

    Google Scholar 

  26. H. Li, L. Ban, Z. Wang, P. Meng, Y. Zhang, R. Wu and Y. Zhao, Nanomaterials, 9, 842 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Council of Scientific and Industrial Research-University of Grant Commission, New Delhi, India for granting the fellowship. This research was also supported by the National Research Foundation of Korea (NRF-2020R1I1A1A01073111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hari Prasad Reddy Kannapu, Young-Kwon Park or Kuthati Bhaskar.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_988_MOESM1_ESM.pdf

Coupling of nitrobenzene hydrogenation and 1, 4-butanediol dehydrogenation for the simultaneous synthesis of aniline and γ-butyrolactone over copper-based catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaddeboina, V., Kannapu, H.P.R., Jeon, JK. et al. Coupling of nitrobenzene hydrogenation and 1, 4-butanediol dehydrogenation for the simultaneous synthesis of aniline and γ-butyrolactone over copper-based catalysts. Korean J. Chem. Eng. 39, 109–115 (2022). https://doi.org/10.1007/s11814-021-0988-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0988-9

Keywords

Navigation