Skip to main content
Log in

Nonpolar solvation dynamics for a nonpolar solute in room temperature ionic liquid: a nonequilibrium molecular dynamics simulation study

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Nonpolar solvation dynamics of a nonpolar diatomic solute in a room temperature ionic liquid (RTIL) has been followed via nonequilibrium molecular dynamics (MD) simulation. Frank-Condon type excitation of the solute, previously in equilibrium in RTIL solvent, has been modelled by abruptly changing the Lennard-Jones (LJ) diameter of the solute atoms and thereby disrupting the equilibrium situation. The rearrangement of the RTIL solvent molecules, which has been seen to be mostly contributed by the solute’s first solvation shell, around the excited solute results overall spectral narrowing and biphasic decay of the solvation energy; a dominant and very rapid process having sub-100 fs relaxation time, followed by a slower one relaxing at a timescale of \(\sim \)5 ps. A mode-coupling theory based calculation is also used to obtain the nonpolar solvation relaxation function for a model nonpolar solute dissolved in model RTIL solvent. The theoretical relaxation decay is not in very good agreement with the simulated nonequilibrium solvation response function; the theory predicts the short time relaxation component slower and the longtime component faster than those of the simulated nonequilibrium relaxation. We have also checked the validity of the linear response theory (LRT) for nonpolar solvation in RTIL by looking at the equilibrium solvation energy correlation in the RTIL solvent in presence of the ground state (GS) and the excited state (ES) solute. Apparent breakdown of the LRT in the present case elucidates the probable disagreement between the theoretical and simulated nonequilibrium nonpolar solvation response functions.

Graphical Abstract

SYNOPSIS Nonpolar solvation dynamics of a nondipolar solute probe in an imidazolium ionic liquid has been studied using classical molecular dynamics simulation method. The equilibrium and non-equilibrium simulated solvation response functions have been compared with experimentally measured (using 3PEPS) and theoretically predicted (using mode coupling based theory) solvation response function. The study reveals that the experimental solvation timescales can originate from the purely nonpolar interaction between excited solute and ionic liquid solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Welton T 1999 Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis Chem. Rev. 99 2071

    Article  CAS  Google Scholar 

  2. Hallett J P and Welton T 2011 Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis 2 Chem. Rev. 111 3508

    Article  CAS  Google Scholar 

  3. MacFarlane D, Tachikawa N, Forsvth M, Pringle J M, Howlett P C, Elliott G D, Davis Jr. J H, Watanable M, Simon P and Angell C A 2014 Energy applications of ionic liquids Energy Environ. Sci.  7 232

    CAS  Google Scholar 

  4. Bates E D, Mayton R D, Ntai I and Davis Jr. J H 2002 CO\(_{2}\) Capture by a Task-Specific Ionic Liquid J. Am. Chem. Soc. 124 926

    Article  CAS  Google Scholar 

  5. Ramdin M, de Loos T W and Vlugt T J H 2012 State-of-the-Art of CO\(_{2}\) Capture with Ionic Liquids Ind. Eng. Chem. Res51 8149

    Article  CAS  Google Scholar 

  6. Mandal P K, Sarkar M and Samanta A 2004 Excitation-Wavelength-Dependent Fluorescence Behavior of Some Dipolar Molecules in Room-Temperature Ionic Liquids J. Phys. Chem. A  108 9048

    Article  CAS  Google Scholar 

  7. Saha S, Mandal P K and Samanta A 2004 Solvation dynamics of Nile Red in a room temperature ionic liquid using streak camera Phys. Chem. Chem. Phys. 6 3106

    Article  CAS  Google Scholar 

  8. Samanta A 2010 Solvation dynamics in ionic liquids: What we have learned from the dynamic fluorescence Stokes shift studies J. Phys. Chem. Lett. 1 1557

    Article  CAS  Google Scholar 

  9. Samanta A 2006 Dynamic Stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids J. Phys. Chem. B  110 13704

    Article  CAS  Google Scholar 

  10. Arzhantsev S, Jin H, Baker G A and Maroncelli M 2007 Measurements of the Complete Solvation Response in Ionic Liquids J. Phys. Chem. B  111 4978

    Article  CAS  Google Scholar 

  11. Maroncelli M, Zhang X-X, Liang M, Roy D and Ernsting N P 2012 Measurements of the complete solvation response of coumarin 153 in ionic liquids and the accuracy of simple dielectric continuum predictions Faraday Discuss.  154 409

    Article  CAS  Google Scholar 

  12. Zhang X-X, Liang M, Ernsting N P and Maroncelli M 2013 Complete Solvation Response of Coumarin 153 in Ionic Liquids J. Phys. Chem. B  117 4291

    Article  CAS  Google Scholar 

  13. Zhang X-X, Liang M, Ernsting N P and Maroncelli M 2013 Conductivity and Solvation Dynamics in Ionic Liquids J. Phys. Chem. Lett.  4 1205

    Article  CAS  Google Scholar 

  14. Zhang X-X, Liang M, Hunger J, Buchner R and Maroncelli M 2013 Dielectric Relaxation and Solvation Dynamics in a Prototypical Ionic Liquid + Dipolar Protic Liquid Mixture: 1-Butyl-3-Methylimidazolium Tetrafluoroborate + Water J. Phys. Chem. B  117 15356

    Article  CAS  Google Scholar 

  15. Halder M, Headley L S, Mukherjee P, Song X and Petrich J W 2006 Experimental and Theoretical Investigations of Solvation Dynamics of Ionic Fluids: Appropriateness of Dielectric Theory and the Role of DC Conductivity J. Phys. Chem. A  110 8623

    Article  CAS  Google Scholar 

  16. Chakrabarty D, Chakraborty A, Seth D, Hazra P and Sarkar N 2004 Dynamics of solvation and rotational relaxation of Coumarin 153 in 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF\(_{6}\)]–water mixtures Chem. Phys. Lett.  397 469

    CAS  Google Scholar 

  17. Chakrabarty D, Chakraborty A, Seth D and Sarkar N 2005 Effect of Water, Methanol, and Acetonitrile on Solvent Relaxation and Rotational Relaxation of Coumarin 153 in Neat 1-Hexyl-3-methylimidazolium Hexafluorophosphate J. Phys. Chem. A  109 1764

    Article  CAS  Google Scholar 

  18. Chakrabarty D, Seth D, Chakrabarty A and Sarkar N 2005 Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sized microemulsions J. Phys. Chem. B  109 5753

    Article  CAS  Google Scholar 

  19. Adhikari A, Sahu K, Dey S, Ghosh S, Mandal U and Bhattacharyya K 2007 Femtosecond Solvation Dynamics in a Neat Ionic Liquid and Ionic Liquid Microemulsion: Excitation Wavelength Dependence J. Phys. Chem. B  111 12809

    Article  CAS  Google Scholar 

  20. Das S K, Sahu P K and Sarkar M 2013 Diffusion–Viscosity Decoupling in Solute Rotation and Solvent Relaxation of Coumarin153 in Ionic Liquids Containing Fluoroalkylphosphate (FAP) Anion: A Thermophysical and Photophysical Study J. Phys. Chem. B  117 636

    Article  CAS  Google Scholar 

  21. Das S K and Sarkar M 2012 Studies on the Solvation Dynamics of Coumarin 153 in 1-Ethyl-3-Methylimidazolium Alkylsulfate Ionic Liquids: Dependence on Alkyl Chain Length ChemPhysChem  13 2761

    Article  Google Scholar 

  22. Das S K, Sahu P K and Sarkar M 2013 Probing the Microscopic Aspects of 1-Butyl-3-Methylimidazolium Trifluoroacetate Ionic Liquid and Its Mixture with Water and Methanol: A Photophysical and Theoretical (DFT) Study J. Fluores.  23 1217

    Article  CAS  Google Scholar 

  23. Horng M L, Gardecki J A, Papazyan A and Maroncelli M 1995 Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited J. Phys. Chem.  99 17311

    Article  CAS  Google Scholar 

  24. Kashyap H K and Biswas R 2008 Dipolar Solvation Dynamics in Room Temperature Ionic Liquids: An Effective Medium Calculation Using Dielectric Relaxation Data J. Phys. Chem. B  112 12431

    Article  CAS  Google Scholar 

  25. Kashyap H K and Biswas R 2010 Solvation Dynamics of Dipolar Probes in Dipolar Room Temperature Ionic Liquids: Separation of Ion\(^{-}\)Dipole and Dipole\(^{-}\)Dipole Interaction Contributions J. Phys. Chem. B  114 254

    Article  CAS  Google Scholar 

  26. Kashyap H K and Biswas R 2010 Solvation Dynamics in Imidazolium and Phosphonium Ionic Liquids: Effects of Solute Motion Ind. J. Chem.  49A 685

    CAS  Google Scholar 

  27. Kashyap H K and Biswas R 2010 Stokes’ Shift Dynamics in Imidazolium Ionic Liquids: Temperature Dependence J. Phys. Chem. B  114 16811

    Article  CAS  Google Scholar 

  28. Daschakraborty S and Biswas R 2011 Stokes’ Shift Dynamics in Alkylimidazolium Aluminate Ionic Liquids: Domination of Solute-IL Dipole-Dipole Interaction Chem. Phys. Lett.  510 202

    CAS  Google Scholar 

  29. Daschakraborty S and Biswas R 2012 Stokes shift dynamics of [Na][TOTO] - a new class of ionic liquids: A comparative study with more common imidazolium analogs Chem. Phys. Lett.  545 54

    CAS  Google Scholar 

  30. Daschakraborty S and Biswas R 2012 Ultrafast Solvation Response in Room Temperature Ionic Liquids: Possible Origin, and Importance of the Collective and the Nearest Neighbour Solvent Modes J. Chem. Phys.  137 114501

    Article  Google Scholar 

  31. Daschakraborty S, Pal T and Biswas R 2013 Stokes shift dynamics of ionic liquids: Solute probe dependence, and effects of self-motion, dielectric relaxation frequency window, and collective intermolecular solvent modes J. Chem. Phys.  139 164503

    Article  Google Scholar 

  32. Pal T and Biswas R 2014 Slow solvation in ionic liquids: Connections to non-Gaussian moves and multi-point correlations J. Chem. Phys.  141 104501

    Article  Google Scholar 

  33. Shim Y and Kim H J 2008 Dielectric Relaxation, Ion Conductivity, Solvent Rotation, and Solvation Dynamics in a Room-Temperature Ionic Liquid J. Phys. Chem. B  112 11028

    Article  CAS  Google Scholar 

  34. Shim Y and Kim H J 2013 Dielectric Relaxation and Solvation Dynamics in a Room-Temperature Ionic Liquid: Temperature Dependence. J. Phys. Chem. B  117 11743

    Article  CAS  Google Scholar 

  35. Terranova Z L and Corcelli S A 2013 On the Mechanism of Solvation Dynamics in Imidazolium-Based Ionic Liquids. J. Phys. Chem. B  117 15659

    Article  CAS  Google Scholar 

  36. Song X 2009 Solvation dynamics in ionic fluids: An extended Debye–Hückel dielectric continuum model J. Chem. Phys.  131 044503

    Article  Google Scholar 

  37. Kobrak M N 2007 A comparative study of solvation dynamics in room-temperature ionic liquids J. Chem. Phys.  127 184507

    Article  Google Scholar 

  38. Shim Y, Duan J, Choi M Y and Kim H J 2003 Solvation in Molecular Ionic Liquids J. Chem. Phys.  119 6411

    Article  CAS  Google Scholar 

  39. Shim Y, Choi M Y and Kim H J 2005 A Molecular Dynamics Computer Simulation Study of Room-Temperature Ionic Liquids. II. Equilibrium and Nonequilibrium Solvation Dynamics J. Chem. Phys.  122 044511

    Article  CAS  Google Scholar 

  40. Kobrak M N 2006 Characterization of the Solvation Dynamics of an Ionic Liquid via Molecular Dynamics Simulation J. Chem. Phys.  125 064502

    Article  Google Scholar 

  41. Schmollngruber M, Schröder C and Steinhauser O 2013 Polarization Effects on the Solvation Dynamics of Coumarin C153 in Ionic Liquids: Components and Their Cross-Correlations J. Chem. Phys.  138 204504

    Article  Google Scholar 

  42. Wu E C and Kim H J 2016 MD Study of Stokes Shifts in Ionic Liquids: Temperature Dependence J. Phys. Chem. B  120 4644

    Article  CAS  Google Scholar 

  43. Muramatsu M, Nagasawa Y and Miyasaka Y 2011 Ultrafast Solvation Dynamics in Room Temperature Ionic Liquids Observed by Three-Pulse Photon Echo Peak Shift Measurements J. Phys. Chem. A 115 3886

    Article  CAS  Google Scholar 

  44. Nagasawa Y and Miyasaka Y 2014 Ultrafast solvation dynamics and charge transfer reactions in room temperature ionic liquids Phys. Chem. Chem. Phys.  16 13008

    Article  CAS  Google Scholar 

  45. Ma J, Bout D V and Berg M 1995 Transient hole burning of \(s\)-tetrazine in propylene carbonate: A comparison of mechanical and dielectric theories of solvation J. Chem. Phys.  103 9146

    Article  CAS  Google Scholar 

  46. Fourkas J T, Benigno A and Berg M 1993 Time-resolved nonpolar solvation dynamics in supercooled and low viscosity \(n\)-butylbenzene J. Chem. Phys.  99 8552

    Article  CAS  Google Scholar 

  47. Fourkas J T and Berg M 1993 Temperature-dependent ultrafast solvation dynamics in a completely nonpolar system J. Chem. Phys.  98 7773

    Article  CAS  Google Scholar 

  48. Bagchi B 1994 Molecular theory of nonpolar solvation dynamics J. Chem. Phys.  100 6658

    Article  CAS  Google Scholar 

  49. Biswas R, Nandi N and Bagchi B 1997 Solvation dynamics in monohydroxy alcohols: Agreement between theory and different experiments J. Phys. Chem. B  101 2968

    Article  CAS  Google Scholar 

  50. Reynolds L, Gardecki J A, Frankland S J V, Horng M L and Maroncelli M 1996 Dipole solvation in nondipolar solvents: experimental studies of reorganization energies and solvation dynamics J. Phys. Chem.  100 10337

    Article  CAS  Google Scholar 

  51. Saven J S and Skinner J L 1993 A molecular theory of the line shape: Inhomogeneous and homogeneous electronic spectra of dilute chromophores in nonpolar fluids J. Chem. Phys.  99 4391

    Article  CAS  Google Scholar 

  52. Ladanyi B M and Stratt R M 1996 Short-Time Dynamics of Solvation: Relationship between Polar and Nonpolar Solvation J. Phys. Chem.  100 1266

    Article  CAS  Google Scholar 

  53. Ladanyi B M and Maroncelli M 1998 Mechanisms of solvation dynamics of polyatomic solutes in polar and nondipolar solvents: A simulation study J. Chem. Phys.  109 3204

    Article  CAS  Google Scholar 

  54. Pal T and Biswas R 2015 Composition dependence of dynamic heterogeneity time-and length scales in [Omim][BF4]/water binary mixtures: Molecular dynamics simulation study J. Phys. Chem. B  119 15683

    Article  CAS  Google Scholar 

  55. Carter E A and Hynes J T 1991 Solvation dynamics for an ion pair in a polar solvent: Time-dependent fluorescence and photochemical charge transfer J. Chem. Phys.  94 5961

    Article  CAS  Google Scholar 

  56. Bernardi E, Martins M M and Stassen H 2005 The breakdown of linear response theory in non-polar solvation dynamics Chem. Phys. Lett.  407 171

    CAS  Google Scholar 

  57. Faeder J and Ladanyi B M 2001 Solvation Dynamics in Aqueous Reverse Micelles: A Computer Simulation Study J. Phys. Chem. B  105 11148

    Article  CAS  Google Scholar 

  58. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery Jr. J A 1993 General Atomic and Molecular Electronic Structure System J. Comput. Chem.  14 1347

    Article  CAS  Google Scholar 

  59. Martínez L, Andrade R, Birgin E G and Martínez J M 2009 Packmol: A package for building initial configurations for molecular dynamics simulations J. Comput. Chem.  30 2157

    Article  Google Scholar 

  60. Lopes J N C, Deschamps J and Pádua A A H 2004 Modeling Ionic Liquids Using a Systematic All-Atom Force Field J. Phys. Chem. B  108 2038

    Article  CAS  Google Scholar 

  61. Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids J. Am. Chem. Soc.  118 11225

    Article  CAS  Google Scholar 

  62. Schroder C 1996 Comparing reduced partial charge models with polarizable simulations of ionic liquids Phys. Chem. Chem. Phys.  118 11225

    Google Scholar 

  63. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C GROMACS: Fast, Flexible, and Free J. Comput. Chem.  26 1701

  64. Nosé S 1984 A unified formulation of the constant temperature molecular-dynamics methods J. Chem. Phys81 511

    Article  Google Scholar 

  65. Hoover W G 1985 Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. 31 1695

    CAS  Google Scholar 

  66. Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 Molecular-Dynamics with Coupling to an External Bath J. Chem. Phys.  81 3684

    Article  CAS  Google Scholar 

  67. Darden T, York D and Pedersen L 1993 Particle mesh Ewald: An  \(N\cdot \)log(\(N)\) method for Ewald sums in large systems J. Chem. Phys.  98 10089

    Article  CAS  Google Scholar 

  68. Maginn E J 2009 Molecular simulation of ionic liquids: current status and future opportunities J. Phys.: Condens. Matter  21 373101

    CAS  Google Scholar 

  69. Pal T and Biswas R 2013 Rank-dependent orientational relaxation in an ionic liquid: an all-atom simulation study Theo. Chem. Acc.  132 1348

    Article  Google Scholar 

  70. Lopes J N C, Deschamps J and Pádua A A H 2006 Nanostructural organization in ionic liquids J. Phys. Chem. B  110 3330

    Article  Google Scholar 

  71. Morgado P, Shimizu K, José M S S, Esperança J M S S, Reis P M, Rebelo L P N, Lopes J N C and Filipe E J M 2013 Using \(^{129}\)Xe NMR to Probe the Structure of Ionic Liquids J. Phys. Chem. Lett.  4 2758

    Article  CAS  Google Scholar 

  72. Hu Z and Margulis C J 2006 Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect Proc. Natl. Acad. Sci. U.S.A.  103 831

    Article  CAS  Google Scholar 

  73. Richert R 2002 Heterogeneous liquids: fluctuations in space and time J. Phys. Condens. Matter. 14 R703

    Article  CAS  Google Scholar 

  74. Jin H, Li X and Maroncelli M 2007 Heterogeneous Solute Dynamics in Room Temperature Ionic Liquids J. Phys. Chem. B  111 13473

    Article  CAS  Google Scholar 

  75. Wang Y and Voth G A 2005 Unique Spatial Heterogeneity in Ionic Liquids J. Am. Chem. Soc.  127 12192

    Article  CAS  Google Scholar 

  76. Triolo A, Russina O, Bleif H-J and Cola E D 2007 Nanoscale Segregation in Room Temperature Ionic Liquids J. Phys. Chem. B 111 4641

    Article  CAS  Google Scholar 

  77. Zheng Z-P, Gun W-H, Roy S, Mazur K, Nazet A, Buchner R, Bonn M and Hunger J 2015 Ionic Liquids: Not only Structurally but also Dynamically Heterogeneous Angew. Chem. Int. Ed.  54 687

    CAS  Google Scholar 

  78. Roy D and Maroncelli M 2010 An improved four-site ionic liquid model. J. Phys. Chem. B  114 12629

    Article  CAS  Google Scholar 

  79. Egorov S A 2003 Nonpolar solvation dynamics in supercritical fluids J. Chem. Phys.  118 10643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SD acknowledges financial and computational support from Indian Institute of Technology, Patna, India. We acknowledge the anonymous reviewers for their sincere effort in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Daschakraborty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 460 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indra, S., Daschakraborty, S. Nonpolar solvation dynamics for a nonpolar solute in room temperature ionic liquid: a nonequilibrium molecular dynamics simulation study. J Chem Sci 130, 3 (2018). https://doi.org/10.1007/s12039-017-1404-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-017-1404-1

Keywords

Navigation