Skip to main content
Log in

Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Elles, A.E. Jailaubekov, R.A. Crowell, S.E. Bradforth, J. Chem. Phys. 125, 044515 (2016)

    Article  ADS  Google Scholar 

  2. B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, I.V. Hertel, J. Phys. Chem. A 108, 2625 (2004)

    Article  Google Scholar 

  3. A. Bernas, C. Ferradini, J.-P. Jay-Gerin, J. Photochem. Photobiol. A 117, 171 (1998)

    Article  Google Scholar 

  4. O. Marsalek, F. Uhlig, J. VandeVondele, P. Jungwirth, Acc. Chem. Res. 45, 23 (2012)

    Article  Google Scholar 

  5. T.W. Marin, K. Takahashi, D.M. Bartels, J. Chem. Phys. 125, 104314 (2006)

    Article  ADS  Google Scholar 

  6. J.V. Coe, A.D. Earhart, M.H. Cohen, G.J. Hoffman, H.W. Sarkas, K.H. Bowen, J. Chem. Phys. 107, 6023 (1997)

    Article  ADS  Google Scholar 

  7. S. Kratz, J. Torres-Alacan, J. Urbanek, J. Lindner, P. Vöhringer, Phys. Chem. Chem. Phys. 12, 12169 (2010)

    Article  Google Scholar 

  8. R.A. Crowell, D.M. Bartels, J. Phys. Chem. 100, 17940 (1996)

    Article  Google Scholar 

  9. C.L. Thomsen, D. Madsen, S.R. Keiding, J. Thogersen, O. Christiansen, J. Chem. Phys. 110, 3453 (1999)

    Article  ADS  Google Scholar 

  10. C.G. Elles, I.A. Shkrob, R.A. Crowell, S.E. Bradforth, J. Chem. Phys. 126, 164503 (2007)

    Article  ADS  Google Scholar 

  11. J. Torres-Alacan, S. Kratz, P. Vöhringer, Phys. Chem. Chem. Phys. 13, 20806 (2011)

    Article  Google Scholar 

  12. V. Engel, R. Schinke, V. Staemmler, J. Chem. Phys. 88, 129 (1998)

    Article  ADS  Google Scholar 

  13. J.C. Tully, J. Chem. Phys. 93, 1061 (1990)

    Article  ADS  Google Scholar 

  14. E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007)

    Article  ADS  Google Scholar 

  15. E. Tapavicza, I. Tavernelli, U. Rothlisberger, C. Filippi, M.E. Casida, J. Chem. Phys. 129, 124108 (2008)

    Article  ADS  Google Scholar 

  16. I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Mol. Struct.: THEOCHEM 914, 22 (2009)

    Article  Google Scholar 

  17. I. Tavernelli, B.F.E. Curchod, A. Laktionov, U. Rothlisberger, J. Chem. Phys. 133, 194104 (2010)

    Article  ADS  Google Scholar 

  18. R.E. Larsen, W.J. Glover, B.J. Schwartz, Science 329, 5987 (2010)

    Article  Google Scholar 

  19. L.D. Jacobson, J.M. Herbert, Science 331, 6023 (2011)

    Article  Google Scholar 

  20. L. Turi, À. Madaràsz, Science 331, 6023 (2011)

    Article  Google Scholar 

  21. J.R. Casey, A. Kahros, B.J. Schwartz, J. Phys. Chem. B 117, 14173 (2013)

    Article  Google Scholar 

  22. F. Uhlig, O. Marsalek, P. Jungwirth, J. Phys. Chem. Lett. 3, 3071 (2012)

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  25. V. Garbuio, M. Cascellai, L. Reining, R. Del Sole, O. Pulci, Phys. Rev. Lett. 97, 137402 (2006)

    Article  ADS  Google Scholar 

  26. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016)

    Article  ADS  Google Scholar 

  27. A. Bernas, C. Ferradini, J.-P. Jay-Gerin, Chem. Phys. 222, 151 (1997)

    Article  ADS  Google Scholar 

  28. CPMD, http://www.cpmd.org/, Copyright IBM Corp. 1990–2015, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

  29. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  30. A. Hassanali et al., PNAS 110, 13723 (2013)

    Article  ADS  Google Scholar 

  31. J. VandeVondele, M. Sprik, Phys. Chem. Chem. Phys. 7, 1363 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vafa Ziaei.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2017-80329-7 .

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaei, V., Bredow, T. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory. Eur. Phys. J. B 90, 224 (2017). https://doi.org/10.1140/epjb/e2017-80329-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80329-7

Keywords

Navigation