Skip to main content

Advertisement

Log in

Facile charge transport in \(\hbox {FeN}_{\mathrm{x}}/\hbox {Mo}_{2}\hbox {N/CNT}\) nanocomposites for efficient hydrogen evolution reactions

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Molybdenum based materials are gaining importance as electrocatalysts for hydrogen evolution reaction because of their low cost and good electrocatalytic efficiency. Introducing iron nitride with molybdenum nitride as a composite results in efficient hydrogen evolution activity with current density of \({\sim }120\) \(\hbox {mA/cm}^{2}\) at \(-400 \hbox { mV}\) vs. RHE. The nanocomposites were characterized using powder XRD, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Diffraction, Thermogravimetric Analysis and FTIR Spectroscopy. The electrochemical investigations suggest that the electrocatalytic activity of the composite increases with iron nitride content. The composite exhibits good electrochemical stability upto 42 hours in acidic medium. The hydrogen evolution reaction (HER) follows Volmer-Heyrovsky mechanism where Volmer reaction is the rate determing step.

Graphical Abstract

SYNOPSIS Introducing iron nitride in composite with molybdenum nitride leads to higher HER activity in acidic media. The in-situ growth of CNTs in the composites enhances the conductivity and decreases the charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conway B E and Jerkiewicz G 2000 Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the “volcano curve” for cathodic H 2 evolution kinetics Electrochim. Acta 45 4075

    CAS  Google Scholar 

  2. Trasatti S 1972 Work function, electronegativity, and electrochemical behaviour of metals J. Electroanal. Chem. Interfacial Electrochem. 39 163

    Article  CAS  Google Scholar 

  3. Wan C, Regmi Y N and Leonard B M 2014 Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction Angew. Chem. Int. Ed. 53 6407

    Article  CAS  Google Scholar 

  4. Pan L F, Li Y H, Yang S, Liu P F, Yu M Q and Yang H G 2014 Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction Chem. Commun. 50 13135

    CAS  Google Scholar 

  5. Chen W-F, Wang C-H, Sasaki K, Marinkovic N, Xu W, Muckerman J T, Zhu Y and Adzic R R 2013 Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production Energy Environ. Sci. 6 943

    CAS  Google Scholar 

  6. Chen W-F, Muckerman J T and Fujita E 2013 Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts Chem. Commun. 49 8896

    CAS  Google Scholar 

  7. Popczun E J, Mckone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S and Schaak R E 2013 Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 135 9267

    Article  CAS  Google Scholar 

  8. Xiao P, Sk M A, Thia L, Ge X, Lim R J, Wang J-Y, Lim K H and Wang X 2014 Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction Energy Environ. Sci. 7 2624

    CAS  Google Scholar 

  9. Mahler B, Hoepfner V, Liao K and Ozin G A 2014 Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution J. Am. Chem. Soc. 136 14121

    Article  CAS  Google Scholar 

  10. Youn D H, Han S, Kim J Y, Kim J Y, Park H, Choi S H and Lee J S 2014 Highly Active and Stable Hydrogen Evolution Electrocatalysts Based on Molybdenum Compounds on Carbon Nanotube À Graphene Hybrid Support ACS Nano 8 5164

    Article  CAS  Google Scholar 

  11. Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I and Nørskov J K 2005 Biomimetic Hydrogen Evolution: MoS\(_{2}\) Nanoparticles as Catalyst for Hydrogen Evolution J. Am. Chem. Soc. 127 5308

    Article  CAS  Google Scholar 

  12. Casalongue H G S, Benck J D, Tsai C, Karlsson R K B, Kaya S, Ng M L, Pettersson L G M, Abild-pedersen F, Nørskov J K, Ogasawara H, Jaramillo T F and Nilsson A 2014 Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction J. Phys. Chem. C 118 29252

    Article  CAS  Google Scholar 

  13. Vrubel H and Hu X 2012 Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions Angew. Chem. Int. Ed. 51 12703

    Article  CAS  Google Scholar 

  14. Scanlon M D, Bian X, Vrubel H, Amstutz V, Schenk K, Hu X, Liu B and Girault H H 2013 Low-cost industrially available molybdenum boride and carbide as “platinum-like” catalysts for the hydrogen evolution reaction in biphasic liquid systems Phys. Chem. Chem. Phys. 15 2847

    Article  CAS  Google Scholar 

  15. Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 Trends in the Exchange Current for Hydrogen Evolution J. Electrochem. Soc. 152 J23

    Article  Google Scholar 

  16. Chen W-F, Sasaki K, Ma C, Frenkel A I, Marinkovic N, Muckerman J T, Zhu Y and Adzic R R 2012 Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets Angew. Chem. Int. Ed. 51 6131

    Article  CAS  Google Scholar 

  17. Ojha K, Saha S, Kumar B, Hazra K S and Ganguli A K 2016 Controlling the Morphology and Efficiency of Nanostructured Molybdenum Nitride Electrocatalysts for the Hydrogen Evolution Reaction ChemCatChem 8 1218

    Article  CAS  Google Scholar 

  18. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B and Xie Y 2014 Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution Chem. Sci. 5 4615

    CAS  Google Scholar 

  19. Matanović I, Garzon F H and Henson N J 2014 Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT Phys. Chem. Chem. Phys. 16 3014

    Article  Google Scholar 

  20. Cao B, Veith G M, Neuefeind J C, Adzic R R and Khalifah P G 2013 Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 135 19186

    Article  CAS  Google Scholar 

  21. Ham D J and Lee J S 2009 Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells Energies 2 873

    Article  CAS  Google Scholar 

  22. Ettmayer P 1970 Das System Molybdan–Stickstoff Monatsh. Chem. 101 127

    Article  CAS  Google Scholar 

  23. Wang S, Ge H, Sun S, Zhang J, Liu F, Wen X, Yu X, Wang L, Zhang Y, Xu H, Neuefeind J C, Qin Z, Chen C, Jin C, Li Y, He D and Zhao Y 2015 A New Molybdenum Nitride Catalyst with Rhombohedral MoS 2 Structure for Hydrogenation Applications J. Am. Chem. Soc. 137 4815

    Article  CAS  Google Scholar 

  24. Dyjak S, Kicinski W and Huczko A 2015 Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: towards an instant, large-scale synthesis of g-C\(_3\)N\(_4\) J. Mater. Chem. A 3 9621

    Article  CAS  Google Scholar 

  25. Bockris J O and Potter E C 1952 The mechanism of the cathodic hydrogen evolution reaction J. Electrochem. Soc. 99 169

    Article  CAS  Google Scholar 

  26. Shinagawa T, Garcia-esparza A T and Takanabe K 2015 Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion Sci. Rep. 5 13801

    Google Scholar 

Download references

Acknowledgements

AKG thanks DST and DeitY, Govt. of India, for financial support. KO thanks UGC, Govt. of India, for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K Ganguli.

Additional information

Dedicated to the memory of the late Professor Charusita Chakravarty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2663 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, K., Banerjee, S. & Ganguli, A.K. Facile charge transport in \(\hbox {FeN}_{\mathrm{x}}/\hbox {Mo}_{2}\hbox {N/CNT}\) nanocomposites for efficient hydrogen evolution reactions. J Chem Sci 129, 989–997 (2017). https://doi.org/10.1007/s12039-017-1302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1302-6

Keywords

Navigation