Skip to main content
Log in

The elusive ≡C-H⋯O complex in the hydrogen bonded systems of Phenylacetylene: A Matrix Isolation Infrared and Ab Initio Study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Hydrogen-bonded complexes of phenylacetylene (PhAc) with methanol (MeOH) and diethylether (DEE) were studied using matrix isolation infrared spectroscopy. This study specifically searched for the ≡C-H ⋯O hydrogen bonded complex in these systems, which manifest a n-σ* interaction and which is a local minimum on the PhAc-MeOH potential surface, as in the case of PhAc-H2O heterodimer. This n-σ* local minimum eluded observation in gas phase studies and it was therefore thought interesting to look for this isomer in cryogenic matrices. While MeOH can interact with PhAc as both a proton donor (O-H ⋯π complex) or a proton acceptor (n-σ* complex), DEE can only manifest the n-σ* isomer. A comparison of the spectral shifts observed in the features of PhAc-MeOH and PhAc-DEE would therefore independently confirm the existence or not of n-σ* complex in both these systems. In addition to the n-σ* complex observed in both the above systems, the O-H ⋯π complex was also discerned in the PhAc-MeOH system. These complexes have stabilization energy in the range of 8-25 kJ /mol. The experimental results were corroborated by computations performed at MP2 and M06-2X, levels of theory, using 6-311 ++G(d,p) and aug-cc-pVDZ basis sets. Single point calculations at the CCSD level of theory were also performed. Atoms-in-molecules (AIM), NBO and LMOEDA analysis were also performed to understand the nature of the intermolecular interactions in these complexes.

The ≡C-H..O hydrogen bonded complex in phenylacetylene-methanol system, which is a n-σ* interaction and a local minimum was observed in a cryogenic inert gas solid. This n-σ* local minima had eluded observation in gas phase studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhao H, Jiamin Chang J and Du L 2016 Comput. Theor. Chem. 1084 126

    Article  CAS  Google Scholar 

  2. Arunan E et al. 2011 Pure Appl. Chem. 83 1619

    CAS  Google Scholar 

  3. Grant J H and Legon A C 2015 Phys. Chem. Chem. Phys. 17 858

    Article  Google Scholar 

  4. Arunan E and Mani D 2015 Faraday Discuss 177 51

    Article  CAS  Google Scholar 

  5. Nishio M, Hirota M and Umezawa Y 1998 The CH /π interaction, Evidence, Nature and Consequences (New York: Wiley-VCH)

  6. Matsuura H, Yoshida H, Hieda M, Yamanaka S, Harada T, Shin-ya K and Ohno K 2003 J. Am. Chem. Soc. 125 13910

    Article  CAS  Google Scholar 

  7. Matsuura H, Yoshida H, Hieda M, Yamanaka S, Harada T, Shin-ya K and Ohno K 2003 J. Am. Chem. Soc. 125 13910

    Article  CAS  Google Scholar 

  8. Engdahl A and Nelander B 1985 J. Chem. Phys. 89 2860

    Article  CAS  Google Scholar 

  9. Jose K V J, Gadre S R, Sundararajan K and Viswanathan K S 2007 J. Chem. Phys. 127 104501

    Article  Google Scholar 

  10. Viswanathan K S, Sankaran K and Sundararajan K 2000 In Encyclopedia of Analytical Chemistry J B Myers (Ed.) (New York: Wiley)

    Google Scholar 

  11. Whittle E, Dows D A and Pimentel G C 1954 J. Chem. Phys. 22 1943

    CAS  Google Scholar 

  12. Karir G and Viswanathan K S 2016 J. Mol. Struct. 1107 145

    Article  CAS  Google Scholar 

  13. Singh P C, Bandyopadhyay B and Patwari G N 2008 J. Phys. Chem. A 112 3360

    Article  CAS  Google Scholar 

  14. Goswami M and Arunan E 2011 Phys. Chem. Chem. Phys. 13 14153

    Article  CAS  Google Scholar 

  15. Singh P C and Patwari G N 2008 J. Phys. Chem. A 112 5121

    Article  CAS  Google Scholar 

  16. Venkatesan V, Sundararajan K and Viswanathan K S 2002 J. Phys. Chem. A 106 7707

    Article  CAS  Google Scholar 

  17. Kar B P, Ramanathan N, Sundararajan K and Viswanathan K S 2012 J. Mol. Struct. 1024 84

    Article  CAS  Google Scholar 

  18. Sundararajan K and Viswanathan K S 2006 J. Mol. Struct. 798 109

    Article  CAS  Google Scholar 

  19. Saini J and Viswanathan K S 2016 J. Mol. Struct. 1118 147

    Article  CAS  Google Scholar 

  20. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Peterson G A, Montgomery J A, Raghavachari K, Al-Laham M A, Zakrzewski V G, Ortiz J V, Foresman J B, Cioslowski J, Stefanov B B, Nanayakkara A, Challacombe M, Peng C Y, Ayala P Y, Chen W, Wong M W, Andres J L, Replogle E S, Gomperts R, Martin R L, Fox D J, Binkley J S, Defrees D J, Baker J, Stewart J P, Head-Gordon M, Gonzalez C and Pople J A 2010 GAUSSIAN 09 Revision C.01 (Gaussian Inc.: Wallingford CT)

  21. The spectra were simulated using SYNSPEC made available by Irikura K, 1995 National Institute of Standards and Technology, Gaithesburg, MD 20899, USA

  22. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  23. Blieger-König F, Bayles D and Schönbohn J AIM2000 (Version 1.0): Chemical Adviser: Bader R F W

  24. Glendening E D, Carpenter J E, and Weinhold F, NBO (Version 3.1)

  25. Su P F and Li H 2009 J. Chem. Phys. 131 014102

    Article  Google Scholar 

  26. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comp. Chem. 14 1347

    Article  CAS  Google Scholar 

  27. King G W and So S P 1970 J. Mol. Spectrosc. 36 468

    Article  CAS  Google Scholar 

  28. Stearns J A and Zwier T S 2003 J. Phys. Chem. A 107 10717

    Article  CAS  Google Scholar 

  29. Venkatesan V, Sundararajan K, Sankaran K and Viswanathan K S 2002 Spectrochim. Acta Part A 58 467

    Article  CAS  Google Scholar 

  30. Bader R F W 1994 In Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press)

    Google Scholar 

  31. Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747

    Article  CAS  Google Scholar 

  32. Popelier P L A 2000 In Atoms in Molecules: An introduction (London: Prentice Hall)

    Book  Google Scholar 

Download references

Acknowledgements

GK and MF gratefully acknowledge the fellowship from DST and MHRD, respectively. The authors are also grateful to IISER Mohali, India for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S VISWANATHAN.

Additional information

Supplementary Information (SI)

The electronic supporting information can be seen at www.ias.ac.in/chemsci.

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KARIR, G., FATIMA, M. & VISWANATHAN, K.S. The elusive ≡C-H⋯O complex in the hydrogen bonded systems of Phenylacetylene: A Matrix Isolation Infrared and Ab Initio Study. J Chem Sci 128, 1557–1569 (2016). https://doi.org/10.1007/s12039-016-1166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1166-1

Keywords

Navigation