Skip to main content
Log in

Matrix isolation infrared spectra of O-H ⋯ π Hydrogen bonded complexes of Acetic acid and Trifluoroacetic acid with Benzene

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Mid infrared spectra of two O–H ⋯π hydrogen-bonded binary complexes of acetic acid (AA) and trifluoroacetic acid (F3AA) with benzene (Bz) have been measured by isolating the complexes in an argon matrix at ∼8 K. In a matrix isolation condition, the O–H stretching fundamentals (ν O−H) of the carboxylic acid groups of the two molecules are observed to have almost the same value. However, the spectral red-shifts of ν O−H bands of the two acids on complexation with Bz are largely different, 90 and 150 cm−1 for AA and F3AA, respectively. Thus, the O–H bond weakening of the two acids upon binding with Bz in a non-interacting environment follows the sequence of their ionic dissociation tendencies (p K a ) in aqueous media. Furthermore, Δν O−H of the latter complex is the largest among the known π-hydrogen bonded binary complexes of prototypical O–H donors reported so far with respect to Bz as acceptor. It is also observed that the spectral shifts (Δν O−H) of phenol-Bz and carboxylic acid-Bz complexes show similar dependence on the acidity factor (p K a). Electronic structure theory has been used to suggest suitable geometries of the complexes that are consistent with the measured IR spectral changes. Calculation at MP2 /6-311 ++G (d, p) level predicts a T-shaped geometry for both AA-Bz and F3AA-Bz complexes, and the corresponding binding energies are 3.0 and 4.5 kcal /mol, respectively. Natural Bond Orbital (NBO) analysis has been performed to correlate the observed spectral behavior of the complexes with the electronic structure parameters.

The spectral red-shifts of the probe ν O-H bands of carboxylic acid-benzene π-hydrogen bonded complexes in an argon matrix were found to correlate with their respective aqueous phase acidities (pK a), and are explained in terms of local charge transfer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Desiraju G R and Steiner T 1999 In The Weak Hydrogen Bond (New York: Oxford University Press)

    Google Scholar 

  2. Engdahl A and Nelander B A 1985 J. Phys. Chem. 89 2860

    Article  CAS  Google Scholar 

  3. Gutowsky H S, Emilsson T and Arunan E 1993 J. Chem. Phys. 99 4883

    Article  CAS  Google Scholar 

  4. Pribble R N, Garrett A W, Haber K and Zwier T S 1995 J. Chem. Phys. 103 531

    Article  CAS  Google Scholar 

  5. Cheng B M, Grover J R and Walters E A 1995 Chem. Phys. Lett. 232 364

    Article  CAS  Google Scholar 

  6. Zwier T S 1996 Annu. Rev. Phys. Chem. 47 205

    Article  CAS  Google Scholar 

  7. Prakash M, Gopalsamy K and Subramanian V 2009 J. Phys. Chem. A 113 13845

    Article  CAS  Google Scholar 

  8. Fujii A, Ebata T and Mikami N 2002 J. Phys. Chem. A 106 8554

    Article  CAS  Google Scholar 

  9. Meyer E A, Castellano R K and Diederich F 2003 Angew. Chem. Int. Ed. 42 1210

    Article  CAS  Google Scholar 

  10. Panja S S and Chakraborty T 2003 J. Chem. Phys. 118 6200

    Article  CAS  Google Scholar 

  11. Das A, Mahato K K, Panja S S and Chakraborty T 2003 J. Chem. Phys. 119 2523

    Article  CAS  Google Scholar 

  12. George L, Sanchez-García E and Sander W 2003 J. Phys. Chem. A 107 6850

    Article  CAS  Google Scholar 

  13. Panja S S, Biswas P and Chakraborty T 2005 Chem. Phys. Lett. 411 128

    Article  CAS  Google Scholar 

  14. Vaupel S, Brutschy B, Tarakeshwar P and Kim K S 2006 J. Am. Chem. Soc. 128 5416

    Article  CAS  Google Scholar 

  15. Jose K V J, Gadre S R, Sundararajan K and Viswanathan K S 2007 J. Chem. Phys. 127 104501

    Article  Google Scholar 

  16. Biswal H S and Wategaonkar S 2009 J. Phys. Chem. A 113 12774

    Article  CAS  Google Scholar 

  17. Zhao Y, Ng H T and Hanson E 2009 J. Chem. Theory Comput. 5 2726

    Article  CAS  Google Scholar 

  18. Crittenden D L 2009 J. Phys. Chem. A 113 1663

    Article  CAS  Google Scholar 

  19. Banerjee P and Chakraborty T 2014 J. Phys. Chem. A 118 7074

    Article  CAS  Google Scholar 

  20. Jeffrey G A and Saenger W 1991 In Hydrogen Bonding in Biological Structures (Berlin: Springer)

    Book  Google Scholar 

  21. Grabowski S J (Ed. ) 2006 In Hydrogen Bonding: New Insights (Dordrecht: Springer)

    Book  Google Scholar 

  22. Serjeant E P and Dempsey B 1979 In Ionization Constants of Organic Acids in Aqueous Solution (Oxford: Pergamon)

    Google Scholar 

  23. Tschumper G S, Leininger M L, Hoffman B C, Valeev E F, Schaefer I. H F and Quack M 2002 J. Chem. Phys. 116 690

    Article  CAS  Google Scholar 

  24. Banerjee P, Bhattacharya I and Chakraborty T 2016 J. Phys. Chem. A 120 3731

    Article  CAS  Google Scholar 

  25. Samanta A K, Pandey P, Bandyopadhyay B and Chakraborty T 2010 J. Phys. Chem. A 114 1650

    Article  CAS  Google Scholar 

  26. Frisch et al. 2010 Gaussian 09, Revision C.01 (Gaussian, Inc.: Wallingford, CT)

  27. Grimme S 2011 WIREs Comput. Mol. Sci. 1 211

    Article  CAS  Google Scholar 

  28. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  29. Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  30. Schmidt M W et al. 1993 J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  31. Su P, Jiang Z, Chen Z and Wu W 2009 J. Chem. Phys. 131 014102

    Article  Google Scholar 

  32. Macoas E M S, Khriachtchev L, Fausto R and Rasanen M 2004 J. Phys. Chem. A 108 3380

    Article  CAS  Google Scholar 

  33. Ito F 2011 Chem. Phys. 382 52

    Article  CAS  Google Scholar 

  34. Saggu M, Levinson N M and Boxer S G 2011 J. Am. Chem. Soc. 133 17414

    Article  CAS  Google Scholar 

  35. Banerjee P, Mukhopadhyay D P and Chakraborty T 2015 J. Chem. Phys. 143 204306

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Council of Scientific and Industrial Research (CSIR), Govt. of India. IB also acknowledges CSIR for receiving Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TAPAS CHAKRABORTY.

Additional information

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BANERJEE, P., BHATTACHARYA, I. & CHAKRABORTY, T. Matrix isolation infrared spectra of O-H ⋯ π Hydrogen bonded complexes of Acetic acid and Trifluoroacetic acid with Benzene. J Chem Sci 128, 1549–1555 (2016). https://doi.org/10.1007/s12039-016-1165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1165-2

Keywords

Navigation