Skip to main content
Log in

Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The kinetics of the reaction between pinonaldehyde (C 10 H 16 O 2) and Cl atom were studied using high level ab initio G3(MP2) and DFT based MPWB1K/6-31 + G(d) and MPW1K/6-31 + G(d) levels of theories coupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. The negative temperature dependent rate expression for the title reaction obtained with Wigner’s and Eckart’s symmetrical tunneling corrections are k(T) =(5.1 ± 0.56) × 10 −19 T 2.35exp[(2098 ± 2)/T] cm 3 molecule −1 s −1, and k(T) =(0.92 ± 0.18) × 10 −19 T 2.60exp[(2204 ± 4)/T] cm 3 molecule −1 s −1, respectively, at G3(MP2)//MPWB1K method. The H abstraction reaction from the –CHO group was found to be the most dominant reaction channel among all the possible reaction pathways and its corresponding rate coefficient at 300 K is k(Eckart’s unsymmetrical) = 3.86 ×10−10 cm 3 molecule −1 s −1. Whereas the channel with immediate lower activation energy is the H-abstraction from –CH- group (Tertiary H-abstraction site, C g). The rate coefficient for this channel is k Cg(Eckart’s unsymmetrical) = 1.83 ×10−15 cm 3 molecule −1 s −1 which is smaller than the dominant channel by five orders of magnitude. The atmospherically relevant parameters such as lifetimes were computed in this investigation of its reaction with Cl atom.

The kinetics of the reaction between pinonaldehyde (C10H16O2) and Cl atom were studied computationally and computed the rate coefficients in the temperature range between 200 and 400 K. The H abstraction reaction from the –CHO group is found to be the most dominant reaction channel among all the possible reaction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Guenther A, Hewitt C N, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M and McKay W A 1995 J. Geophys. Res. 100 8873

    Article  CAS  Google Scholar 

  2. Guenther A, Geron C, Pierce T, Lamb B, Harley P and Fall R 1996 Atmos. Environ. 34 2205

    Article  Google Scholar 

  3. Fall R and Hewitt C N (Ed.) 1999 In Reactive Hydrocarbons in the Atmosphere (San Diego: Academic Press) p. 41

  4. Fuentes J D, Lerdau M, Atkinson R, Baldocchi D, Bottenheim J W, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey T D and Stockwell W 2000 B. Am. Met. Soc. 81 1537

    Article  Google Scholar 

  5. Geron C, Rasmussen R, Arnts R R and Guenther A 2000 Atmos. Environ. 34 1761

    Article  CAS  Google Scholar 

  6. Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J and Troe J 2006 Atmos. Chem. Phys. 6 3625

    Article  CAS  Google Scholar 

  7. Singh H B, Thakur A N, Chen Y E and Kanakidou M 1996 Geophys. Res. Lett. 23 1523

    Google Scholar 

  8. Spicer C W, Chapman E G, Finlayson-Pitts B J, Plastridge R A, Hubbe J M, Fast J D and Berkowitz C M 1998 Nature 394 353

    Article  CAS  Google Scholar 

  9. Platt U, Allan W and Lowe D 2004 Atmos. Chem. Phys. 4 2393

    Article  CAS  Google Scholar 

  10. Wingenter O W, Kubo M K, Blake N J, Smith Jr. T W, Blake D R and Rowland F S 1996 J. Geophys. Res. 101 4331

    Article  CAS  Google Scholar 

  11. Graedel T E and Keene W C 1995 Global Biogeochem. Cycl. 9 47

    Article  CAS  Google Scholar 

  12. DeHaan D O, Brauers T, Oum K, Stutz J, Nordmeyer T and Finlayson-Pitts B J 1999 Int. Rev. Phys. Chem. 18 343

    Article  CAS  Google Scholar 

  13. Keene W C 1995 In Inorganic C1 Cycling in the Marine Boundary Layer: A Review In Naturally Produced Organohalogens A Grimvall A and E W B de Leer (Eds.) (Dordrecht, The Netherlands: Kluwer Academic) p. 363

  14. Keene W C, Jacob D J and Fan S M 1996 Atmos. Environ. 30 R1–R3

    Article  Google Scholar 

  15. DeMore W B, Sander S P, Golden D M, Hampson R F, Kurylo M J, Howard C J, Ravishankara A R, Kolb C E and Molina M J 1997 In Chemical Kinetics a Photochemical Data for Use in Stratospheric Modeling Evaluation Number 12 (California Institute of Technology, Pasadena, CA: J P L Publication) pp. 97-4

  16. Atkinson R, Baulch D L, Cox R A, Hampson Jr. R F, Kerr J A, Rossi M J and Troe J 1997 J. Phys. Chem. Ref. Data 26 521

    Article  CAS  Google Scholar 

  17. Atkinson R J 1997 J. Phys. Chem. Ref. Data 26 215

    Article  CAS  Google Scholar 

  18. Davis M E, Talukdar R K, Notte G, Ellison G B and Burkholder J B 2007 Environ. Sci. Technol. 41 3959

    Article  CAS  Google Scholar 

  19. Hallquist M, Wängberg I and Ljungström E 1997 Environ. Sci. Technol. 31 3166

    Article  CAS  Google Scholar 

  20. Alvarado A, Arey J and Atkinson R 1998 J. Atmos. Chem. 31 281

    Article  CAS  Google Scholar 

  21. Glasius M, Galogirou A, Jensen N R, Hjorth J and Nielsen C J 1997 Int. J. Chem. Kinet. 29 527

    Article  CAS  Google Scholar 

  22. Nozière B, Spittler M, Ruppert L, Barnes I, Becker K H, Pons M and Wirtz K 1999 Int. J. Chem. Kinet. 31 291

    Article  Google Scholar 

  23. Lynch B J, Fast P L, Harris M and Truhlar D G 2000 J. Phys. Chem. A 104 4811

    Article  CAS  Google Scholar 

  24. Zhao Y and Truhlar D G 2004 J. Phys. Chem. A 108 6908

    Article  CAS  Google Scholar 

  25. Frisch M J et al. 2010 Gaussian 09, Revision B.01 (Gaussian, Inc.: Wallingford CT

  26. Zhao Y, Schultz N E and Truhlar D G 2006 J. Chem. Theor. Comput. 2 364

    Article  Google Scholar 

  27. Chandra A K 2012 J. Mol. Model. 18 4239

    Article  CAS  Google Scholar 

  28. Fernandez-Ramos A, Miller J A, Klippenstein S J and Truhlar D G 2006 Chem. Rev. 106 4518

    Article  CAS  Google Scholar 

  29. Curtiss L A, Redfern P C, Raghavachari K, Rassolov V and Pople J A 1999 J. Chem. Phys. 110 4703

    Article  CAS  Google Scholar 

  30. Dennington I I R, Keith T, Millam J, Eppinnett K, Hovell W L and Gilliland R 2003 GaussView, Version 3.09 (Semichem, Inc.: Shawnee Mission, KS)

  31. Wright M R 1999 In Fundamental Chemical Kinetics and Exploratory Introduction to the Concepts (Chichester UK: Ellis Horwood)

  32. Ralchenko Y, Jou F C, Kelleher D E, Kramida A E, Musgrove A, Reader J, Wiese W L and Olsen K 2007 NIST Atomic Spectra Database, version 3.1.2 (National Institute of Standards and Technology: Gaithersburg, MD)

  33. Wigner E P Z 1932 Phys. Chem. B 19 203

    Google Scholar 

  34. Eckart C 1930 Phys. Rev. 35 1303

    Article  CAS  Google Scholar 

  35. Johnston H S and Heicklen J 1962 J. Phys. Chem. 66 532

    Article  Google Scholar 

  36. Louis F, Gonzalez C A, Huie R E and Kurylo M J 2000 J. Phys. Chem. A 104 8773

    Article  CAS  Google Scholar 

  37. Ali M A and Rajakumar B 2010 J. Comput. Chem. 31 500

    CAS  Google Scholar 

  38. Ali M A and Rajakumar B 2010 J. Mol. Struct: THEOCHEM 949 73

    Article  CAS  Google Scholar 

  39. Kaliginedi V, Ali M A and Rajakumar B 2012 Int. J. Quantum Chem. 112 1066

    Article  CAS  Google Scholar 

  40. Ali M A and Rajakumar B 2011 Int. J. Chem. Kinet. 43 418

    Article  CAS  Google Scholar 

  41. Ali M A, Upendra B and Rajakumar B 2011 Chem. Phys. Lett. 511 440

    Article  CAS  Google Scholar 

  42. Dash M R and Rajakumar B 2012 J. Phys. Chem. A 116 5856

    Article  CAS  Google Scholar 

  43. Korchowiec J, Kawahara S I, Matsumura K, Uchimara T and Surgie M 1999 J. Phys. Chem. A 103 3548

    Article  CAS  Google Scholar 

  44. Chandra A K and Uchimaru T 2000 J. Phys. Chem. A 104 8535

    Article  CAS  Google Scholar 

  45. Alvarez-Idaboy J R, Cruz-Torres A, Galano A and Ruiz-Santoyo M E 2004 J. Phys. Chem. A 108 2740

    Article  CAS  Google Scholar 

  46. Zhang M, Lin Z and Song C 2007 J. Chem. Phys. 126 34307

    Article  Google Scholar 

  47. Chuang Y and Truhlar D G 2000 J. Chem. Phys. 112 1221

    Article  CAS  Google Scholar 

  48. Gruber-Stadler M, Mühlhäuser M, Sellevåg S R and Nielsen C J 2008 J. Phys. Chem. A 112 9

    Article  CAS  Google Scholar 

  49. Beukes J A, D’Anna B, Bakken V and Nielsen C J 2000 Phys. Chem. Chem. Phys. 2 4049

    Article  CAS  Google Scholar 

  50. Alvarez-Idaboy J R, Mora-Diez N, Boyd R J and Vivier-Bunge A 2001 J. Am. Chem. Soc. 123 2018

    Article  CAS  Google Scholar 

  51. Alvarez-Idaboy J R, Mora-Diez N and Vivier-Bunge A 2000 J. Am. Chem. Soc. 122 3715

    Article  CAS  Google Scholar 

  52. Galano A, Alvarez-Idaboy J R, Ruiz-Santoyo M. E. and Vivier-Bunge A 2005 J. Phys. Chem. A 109 169

    Article  CAS  Google Scholar 

  53. Vereecken L and Peeters J 2002 Phys. Chem. Chem. Phys. 4 467

    Article  CAS  Google Scholar 

  54. Wang Y, Liu J -y, Li Z., Wang L, Wu J -y and Sun C -c 2006 J. Phys. Chem. A 110 5853

    Article  Google Scholar 

  55. Sun H and Law C K 2010 J. Phys. Chem. A 114 12088

    Article  CAS  Google Scholar 

  56. Gao H, Liu J -y and Sun C -c 2009 J. Chem. Phys. 130 224301

    Article  Google Scholar 

  57. Srinivasulu G and Rajakumar B 2013 J. Phys. Chem. A 117 4534

    Article  CAS  Google Scholar 

  58. Aschmann S M and Atkinson R 1995 Int. J. Chem. Kinet. 27 613

    Article  CAS  Google Scholar 

  59. Tyndall G S, Orlando J J, Wallington T J, Dill M and Kaiser E W 1997 Int. J. Chem. Kinet. 29 43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.S. and B.R. are very grateful to the Ministry of Earth Sciences, Government of India for funding. We thank Mr. V. Ravichandaran, High performance computing centre (HPCE), Indian Institution of Technology Madras, Chennai, for providing us computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B RAJAKUMAR.

Additional information

Supplementary Information (SI)

The electronic supporting information can be seen at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SRINIVASULU, G., RAJAKUMAR, B. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study. J Chem Sci 128, 977–989 (2016). https://doi.org/10.1007/s12039-016-1075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1075-3

Keywords

Navigation