Skip to main content
Log in

On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide: Does the nature of nitrogen really control the activity towards oxygen reduction?

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Synthesis of metal-free electrocatalyst for the cathodic reduction of oxygen is of great interest for fuel cell and metal-air battery applications. The heteroatom-doped graphene/reduced graphene oxide (rGO) is very promising and the nitrogen-doped rGO (N-rGO) is emerging as a new inexpensive electrocatalyst for oxygen reduction reaction (ORR). Herein, we describe the effect of the chemical nature and amount of nitrogen in N-rGO towards ORR in acidic solution. Four different samples of N-rGO with different nitrogen content were synthesized by simple chemical route. The chemical nature and nitrogen content were analyzed with X-ray photoelectron spectroscopic measurements. The electrocatalytic performance of the catalyst was examined by cyclic and hydrodynamic voltammetric studies. All the N-rGO samples favor 4-electron pathway for the reduction of oxygen in acidic solution. The onset potential and kinetic current density depends on the nature of the doped nitrogen. It is demonstrated that the chemical nature and the amount of nitrogen actually control the ORR activity. The N-rGO which contains a large amount of pyridinic nitrogen with N/C ratio of 0.074 has high catalytic activity. The carbon bonded to pyridinic nitrogen could be a possible catalytic site in ORR. Our studies suggest that the graphitic nitrogen does not significantly influence the electrocatalytic activity of N-rGO.

It is demonstrated that the chemical nature and the amount of nitrogen atom substitutionally doped onto the carbon framework of the N-doped reduced graphene oxide controls the electrocatalytic performance towards oxygen reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nie Y, Li L and Wei Z 2015 Chem. Soc. Rev. 44 2168

    Article  CAS  Google Scholar 

  2. Wu G and Zelenay P 2013 Acc. Chem. Res. 46 1878

    Article  CAS  Google Scholar 

  3. Bag S, Roy K, Gopinath C S and Raj C R 2014 ACS Appl. Mater. Interfaces 6 2692

    Article  CAS  Google Scholar 

  4. Bag S, Mondal B, Das A K and Raj C R 2015 Electrochim. Acta 163 16

    Article  CAS  Google Scholar 

  5. Dai L, Xue Y, Qu L, Choi H J and Baek J B 2015 Chem. Rev. 115 4823

    Article  CAS  Google Scholar 

  6. Zhou X, Qiao J, Yang L and Zhang J 2014 Adv. Energy Mater. 4 1301523

    Google Scholar 

  7. Ghosh S and Raj C R 2010 J. Phys. Chem. C 114 10843

    Article  CAS  Google Scholar 

  8. Seger B and Kamat P V 2009 J. Phys. Chem. C 113 7990

    Article  CAS  Google Scholar 

  9. Wei D, Liu Y, Wang Y, Zhang H, Huang L and Yu G 2009 Nano Lett. 9 1752

    Article  CAS  Google Scholar 

  10. Shui J, Wang M, Du F and Dai L 2015 Sci. Adv. 1 140012

    Article  Google Scholar 

  11. Wang H, Maiyalagan T and Wang X 2012 ACS Catal. 2 781

    Article  CAS  Google Scholar 

  12. Zhang J, Zhao Z, Xia Z and Dai L 2015 Nat. Nanotechnol. 10 444

    Article  CAS  Google Scholar 

  13. Gong K, Du F, Xia Z, Durstock M and Dai L 2009 Science 323 760

    Article  CAS  Google Scholar 

  14. Watanabe H, Asano S, Fujita S, Yoshida H and Arai M 2015 Chem. Sus. Chem. 8 1156

    Article  Google Scholar 

  15. Ma Z, Dou S, Shen A, Tao L, Dai L and Wang S 2015 Angew. Chem. 127 1908

    Article  Google Scholar 

  16. Rao C V, Cabrera C R and Ishikawa Y 2010 J. Phys. Chem. Lett. 1 2622

    Article  CAS  Google Scholar 

  17. Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J and Ruoff R S 2012 Energy Environ. Sci. 5 7936

    Article  CAS  Google Scholar 

  18. Raj C R 2013 In Innovative graphene technologies: Evaluation and application A Tiwari and A A Balandin (Eds.) (Shropshire: Smithers Rapra Technology Ltd.) p. 293

  19. Wang Y, Shao Y, Matson D W, Li J and Lin Y 2010 ACS Nano 4 1790

    Article  CAS  Google Scholar 

  20. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Yue W., Nguyen S B T and Ruoff R S 2007 Carbon 45 1558

    Article  CAS  Google Scholar 

  21. Park S, Hu Y, Hwang J O, Lee E S, Casabianca L B, Cai W, Potts J R, Ha H W, Chen S, Oh J, Kim S O, Kim Y H, Ishii Y and Ruoff R S 2012 Nat. Commun. 3 638

    Article  Google Scholar 

  22. Dey R S, Hajra S, Sahu R K, Raj C R and Panigrahi M K 2012 Chem. Commun. 48 1787

    Article  CAS  Google Scholar 

  23. Bag S and Raj C R 2014 J. Mater. Chem. A 2 17848

    Article  CAS  Google Scholar 

  24. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  CAS  Google Scholar 

  25. Gao M R, Lin Z -Y, Zhuang T -T, Jiang J, Xu Y -F, Zheng Y -R and Yu S -H 2012 J. Mater. Chem. 22 13662

    Article  CAS  Google Scholar 

  26. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y and Rong J 2013 J. Mater. Chem. B 1 39

    Article  CAS  Google Scholar 

  27. Lin Z, Waller G, Liu Y, Liu M and Wong C P 2012 Adv. Energy Mater. 2 884

    Article  CAS  Google Scholar 

  28. Lin Z, Waller G H, Yan L, Liu M and Wong C P 2013 Carbon 53 130

    Article  CAS  Google Scholar 

  29. Yang S, Zhi L, Tang K, Feng X, Maier J and Müllen K 2012 Adv. Funct. Mater. 22 3634

    Article  CAS  Google Scholar 

  30. Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126

    Article  CAS  Google Scholar 

  31. Rodil V S, Paredes J I, Alonso A M and Tascón J M D 2009 J. Mater. Chem. 19 3591

    Article  Google Scholar 

  32. Gojkovi S L, Zecevic S K and Savinell R F 1998 J. Electrochem. Soc. 145 3713

    Article  Google Scholar 

  33. Antoine O and Durand R 2000 J. Appl. Electrochem. 30 839

    Article  CAS  Google Scholar 

  34. Liang J, Du X, Gibson C, Du X W and Qiao S Z 2013 Adv. Mater. 25 6226

    Article  CAS  Google Scholar 

  35. Wu J, Yang Z, Li X, Sun Q, Jin C, Strasser P and Yang R 2013 J. Mater. Chem. A 1 9889

    Article  CAS  Google Scholar 

  36. Liu J, Song P, Zhigan N and Xu W 2015 Electrocatalysis 6 132

    Article  CAS  Google Scholar 

  37. Sidik R A, Anderson A B, Subramanian N P, Kumaraguru S P and Popov B N 2006 J. Phys. Chem. B 110 1787

    Article  CAS  Google Scholar 

  38. Zhang L and Xia Z 2011 J. Phys. Chem. C 115 11170

    Article  CAS  Google Scholar 

  39. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L and Qu L 2011 J. Am. Chem. Soc. 134 15

    Article  Google Scholar 

  40. Li H, Kang W, Wang L, Yue Q, Xu S, Wang H and Liu J 2013 Carbon 54 249

    Article  CAS  Google Scholar 

  41. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan L J, Alvi S F and Li L 2013 Angew. Chem. Int. Ed. 52 11755

    Article  CAS  Google Scholar 

  42. Tuci G, Zafferoni C, D’Ambrosio P, Caporali S, Ceppatelli M, Rossin A, Tsoufis T, Innocenti M and Giambastiani G 2013 ACS Catal. 3 2108

    Article  CAS  Google Scholar 

  43. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J and Miyata S 2009 J. Power Sources 187 93

    Article  CAS  Google Scholar 

  44. Tiva S, Guangzhi H, Xueen J and Thomas W 2012 ACS Nano 6 8904

    Article  Google Scholar 

  45. Liu M, Song Y, He S, Tjiu W W, Pan J, Xia Y-Y and Liu T 2014 ACS Appl. Mater. Interfaces 6 4214

    Article  CAS  Google Scholar 

  46. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T and Lin J 2011 J. Mater. Chem. 21 8038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology, New Delhi. We thank Department of Physics, Indian Institute of Technology Kharagpur for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C RETNA RAJ.

Additional information

Supplementary Information (SI)

Experimental details, elemental mapping, XPS survey scan, deconvoluted C1s spectra, and cyclic voltammogram are given as supplementary information. For details see www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2.93 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BAG, S., RAJ, C.R. On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide: Does the nature of nitrogen really control the activity towards oxygen reduction?. J Chem Sci 128, 339–347 (2016). https://doi.org/10.1007/s12039-016-1034-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1034-z

Keywords

Navigation