Skip to main content
Log in

A density functional investigation on the electronic and magnetic properties of LnSi (Ln=La-Lu) Diatom

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Bond lengths, vibrational frequencies, electron affinities, magnetic properties, and ionization potentials of the neutral and charged LnSi (Ln =La-Lu) diatom were studied by using the density functional method with relativistic effect being taken into account. Ground state was assigned for each species. The calculated natural populations of LnSi (Ln =La-Lu) exhibit that the charges are transferred mainly from 6 s 2 to 5 d,and most of 4f subshell in LnSi is inert without involving chemical bonding. The calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps show that the HOMO-LUMO gaps are increased and exhibit oscillating behavior from LaSi to LuSi. Interestingly, total magnetic properties of LnSi (Ln =La-Lu)diatoms depend on the localized 4f electrons which generate the magnetic moment of LnSi diatoms; additionally, the magnetic moment of EuSi is 11 μ B, which is the highest one. Comparisons with the available experimental and theoretical values are made and a good agreement is reached.

Bond lengths, vibrational frequencies, electron affinities, magnetic properties, and ionization potentials of the neutral and charged LnSi (Ln=La-Lu) diatom were calculated by using the density functional method with relativistic effect. The magnetic moment of LnSi (Ln=La-Lu) increased gradually from LaSi to EuSi and decreased from EuSi to LuSi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Beck S M 1989 J. Chem. Phys. 90 6306

    Article  CAS  Google Scholar 

  2. Ohara M, Miyajima K, Pramann A, Nakajima K and Kaya K 2002 J. Phys. Chem. A 106 3702

    Article  CAS  Google Scholar 

  3. Zhao R N, Ren Z, Bai J T, Guo P and Han J G 2006 J. Phys. Chem. A 110 4071

    Article  CAS  Google Scholar 

  4. Zhao R N, Han J G and Duan Y H 2014 Thin Solid Films 556 571

    Article  CAS  Google Scholar 

  5. Grubisic A, Ko Y J, Wang H and Bowen K H 2009 J. Am. Chem. Soc. 131 10783

    Article  CAS  Google Scholar 

  6. Zhao G F, Sun J M, Gu Y Z and Wang Y X 2009 J. Chem. 131 114312

    Google Scholar 

  7. Cao T T, Feng X J, Zhao L X, Liang X, Lei Y M and Luo Y H 2008 Eur. Phys. J. D 49 343

    Article  CAS  Google Scholar 

  8. Zhao R N, Han J G, Bai J T, Liu F Y and Sheng L S 2010 Chem. Phys. 372 89

    Article  CAS  Google Scholar 

  9. Zhao R N, Han J G and Sheng L S 2010 Chem. Phys. 378 82

    Article  CAS  Google Scholar 

  10. (a) Liu Z L, Yuan H K and Chen H 2012 Appl. Mech. Mater. 1301035; (b) Zhao R N and Han J G 2014 RSC Adv. 4 64410

  11. Dolg M, Stoll H, Savin A and Preuss H 1989 Theor. Chim. Acta 75 173

    Article  CAS  Google Scholar 

  12. Zhai J, Miao C Q, Li S D and Wang L S 2010 J. Phys. Chem. A 114 12155

    Article  CAS  Google Scholar 

  13. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M J, Knox E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O J, Foresman B, Ortiz J V, Cioslowski J and Fox D J 2009 In Gaussian 09 (Wallingford CT: Gaussian, Inc.)

  14. Banakh O E and Kotur B Y 1998 J. Alloy Compd. 268 L3

    Article  CAS  Google Scholar 

  15. Liu T G, Zhao G and Wang Y 2011 Phys. Lett. A 375 1120

    Article  CAS  Google Scholar 

  16. Guo L, Zheng X, Zeng Z and Zhang C 2012 Chem. Phys. Lett. 550 134

    Article  CAS  Google Scholar 

  17. Roger J, Guizouarn T, Hiebl K, Halet J F and Guérin R 2005 J. Alloy. Compd. 394 28

    Article  CAS  Google Scholar 

  18. Tuilier M H, Wetzel P and Pirri C 1994 Phys. Rev. B 50 2333

    Article  CAS  Google Scholar 

  19. Cao T T, Zhao L X, Feng X J, Lei Y M and Luo Y H 2009 Theochem 895 148

    Article  CAS  Google Scholar 

  20. Han J G and Hagelberg F 2009 J. Comput. Theor. Nanosci. 6 257

    Article  CAS  Google Scholar 

  21. Zhao R N, Yuan Y H and Han J G 2015 J. Clust. Sci. 26 1143

    Article  CAS  Google Scholar 

  22. Zhao R N, Yuan Y H, Han J G and Duan Y H 2014 RSC Adv. 4 59331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science fund of China (11179035), Innovation Program of Shanghai Municipal Education Commission (14YZ164) as well as Physical electronics disciplines (NO: 12XKJC01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YAN-HONG YUAN or JU-GUANG HAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHAO, RN., CHEN, R., YUAN, YH. et al. A density functional investigation on the electronic and magnetic properties of LnSi (Ln=La-Lu) Diatom. J Chem Sci 128, 365–371 (2016). https://doi.org/10.1007/s12039-015-1010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-1010-z

Keywords

Navigation