Skip to main content
Log in

A first-principles study of chlorine adsorption characteristics on α-Cr2O3 nanostructures

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The structural stability, electronic and adsorption properties of chlorine on pristine, Zn, W and N-substituted α-Cr2O3 nanostructures are successfully optimized and simulated with the help of density functional theory utilizing B3LYP/ LanL2DZ basis set. The structural stability of α-Cr2O3 nanostructures are discussed in terms of formation energy. The electronic properties of pristine, Zn, W and N-substituted α-Cr2O3 nanostructures are described with HOMO-LUMO gap, ionization potential and electron affinity. Dipole moment and point symmetry group of pristine, Zn, W and N-substituted α-Cr2O3 nanostructures are reported. The adsorption characteristics of Cl2 on α-Cr2O3 materials are investigated and the prominent adsorption sites of Cl2 on α-Cr2O3 nanostructures are identified. The important parameters such as adsorbed energy, energy gap, average energy gap variation and Mulliken population analysis are used to find the favourable adsorption site of Cl2 on α-Cr2O3 base material. The substitution of impurities such as Zn, W and N in α-Cr2O3 nanostructures enhances the Cl2 adsorption characteristics in the mixed gas environment.

The chlorine adsorption characteristics on pristine and impurity- substituted α-Cr2O3 nanostructures are studied in terms of adsorbed energy, Mulliken charge transfer, HOMO-LUMO gap and average energy gap variation. The impurity- substituted α-Cr2O3 nanostructures exhibit enhanced chlorine adsorption characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Korotcenkov G, Han S H and Cho B K 2013 J. Sensor Sci. Technol. 22 1

  2. Chen P C, Shen G and Zhou C 2008 IEEE Trans. Nanotechnol. 7 668

    Article  Google Scholar 

  3. Arnold C, Harms M and Goschnick J 2002 IEEE Sens. J. 2 179

    Article  CAS  Google Scholar 

  4. Aswal D K and Gupta S K 2007 In Science and Technology of Chemiresistive Gas Sensors 2 nd Ed. (Nova Science Publisher: New York)

  5. Moseley P T 1997 Meas. Sci. Technol. 8 223

    Article  CAS  Google Scholar 

  6. Cantalini C 2004 J. Eur. Ceram. Soc. 24 1421

    Article  CAS  Google Scholar 

  7. Cellard A V, Garnier G, Fantozzi G, Baret and Fort P 2009 Ceram. Int. 35 913

    Article  CAS  Google Scholar 

  8. El-Molla S A 2005 Appl. Catal., A 280 189

    Article  CAS  Google Scholar 

  9. Morrison S 1977 J. Catal. 47 69

    Article  CAS  Google Scholar 

  10. Saroha A K 2006 JCHAS 13 5

    CAS  Google Scholar 

  11. Frank M, Rivera R and Stashans A 2012 Physica B 407 1262

    Article  Google Scholar 

  12. Blacklocks A N, Atkinson A, Packer R J, Savin S L P and Chadwick A V 2006 Solid State Ionics 177 2939

    Article  CAS  Google Scholar 

  13. Dinadayalane T C, Paytakov G and Leszczynski J 2013 J. Mol. Model. 19 2855

    Article  CAS  Google Scholar 

  14. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr., Peralta J E, Ogliaro F, Bearpark, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, and Fox D J 2009 (Gaussian, Inc.: Wallingford CT)

  15. Paul K W, Kubicki J D and Sparks D L 2007 Eur. J. Soil Sci. 58 978

    Article  CAS  Google Scholar 

  16. Becke A D 1988 Phys. Rev. A: At. Mol. Opt. Phys. 38 3098

    Article  CAS  Google Scholar 

  17. Becke A D 1993 J. Chem. Phys. 98 1372

    Article  CAS  Google Scholar 

  18. Boyle N M O, Tenderholt A L and Langner K M 2007 J. Comp. Chem. 29 839

    Article  Google Scholar 

  19. Dutta G, Gupta A, Waghmare U V and Hegde M S 2011 J. Chem. Sci. 123 509

    Article  CAS  Google Scholar 

  20. Sriram S and Chandiramouli R 2013 EPJ Plus 128 116

    Google Scholar 

  21. Nagarajan V and Chandiramouli R 2014 Alexandria Engineering Journal 53 437

    Article  Google Scholar 

  22. Chandiramouli R and Sriram S 2014 Mater. Sci. Semicond. Process. 27 800

    Article  CAS  Google Scholar 

  23. Zhang H., Li J, Zhang H, Liang X, Yin C, Diao Q, Zheng J and Lu G 2013 Sens. Actuators B 180 66

    Article  CAS  Google Scholar 

  24. Nigussa K N, Nielsen K L, Borck Ø and Støvneng J A 2011 Corros. Sci. 53 3612

    Article  CAS  Google Scholar 

  25. Balouria V, Kumar A, Singh A, Samanta S, Debnath A K, Mahajan A, Bedi R K, Aswal D K, Gupta S K and Yakhmi J V 2011 Sens. Actuators B 157 466

    Article  CAS  Google Scholar 

  26. Mulliken R S 1955 J. Chem. Phys. 23 1833

    Article  CAS  Google Scholar 

  27. Csizmadia I G 1976 In Theory and Practice of MO Calculations on Organic Molecules (Elsevier: Amsterdam, Oxford, New York) p. 159

  28. Nagarajan V and Chandiramouli R 2014 Ceram. Int. 40 16147

    Article  CAS  Google Scholar 

  29. Nagarajan V and Chandiramouli R 2014 Comp. Theor. Chem. 1049 20

    Article  CAS  Google Scholar 

  30. Nagarajan V and Chandiramouli R 2014 Struct. Chem. 25 1765

    Article  CAS  Google Scholar 

  31. Beheshtian J, Zargham B, Mohammad K and Ahmadi A 2011 J. Mol. Model. 18 2653

    Article  Google Scholar 

  32. Beheshtian J, Peyghan A A and Zargham B 2012 Physica E 44 1963

    Article  CAS  Google Scholar 

  33. Nagarajan V and Chandiramouli R 2014 J. Inorg. Organomet. Polym. 24 1038

    Article  CAS  Google Scholar 

  34. Nagarajan V and Chandiramouli R 2015 J. Inorg. Organomet. Polym. 25 837

    Article  CAS  Google Scholar 

  35. Nagarajan V and Chandiramouli R 2015 Superlattices Microstruct. 78 22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R CHANDIRAMOULI.

Additional information

Supplementary Information

Figures S1 to S7 are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1.72 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NAGARAJAN, V., CHANDIRAMOULI, R. A first-principles study of chlorine adsorption characteristics on α-Cr2O3 nanostructures. J Chem Sci 127, 1785–1794 (2015). https://doi.org/10.1007/s12039-015-0940-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0940-9

Keywords

Navigation