Skip to main content
Log in

Synthesis, Photophysical, Electrochemical and Thermal Studies of Triarylamines based on benzo[g]quinoxalines

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A series of novel dipolar and nonplanar compounds featuring electron acceptor benzo[g]quinoxaline and various electron donor triarylamine units have been synthesized in good yields and fully characterized. The photophysical, electrochemical and thermal properties of the synthesized compounds are described. The photoluminescence properties of the synthesized molecules are influenced by peripheral amines. The derivatives have high Stokes shifts, low band gap and the Commission Internationale de l’Eclairage (CIE) coordinates are positioned in the green–yellow region of the chromaticity diagram. The ionization potentials and electron affinity were found to be in the range of 5.11–5.60 eV and 2.77–2.93 eV and are comparable to the commonly used hole transporters. Thermal studies also reveal that these synthesized molecules have good thermal stability with 5% and 10% weight loss temperature ranging from 200 to 355°C and 268 to 442°C, respectively.

The absorption, emission, electrochemical and thermal properties of the synthesized materials is significantly influenced by the nature of peripheral amine segments attached to the benzo[g]quinoxaline segment. Ionization potential and electron affinity of the synthesized molecules are comparable to most commonly used hole transporting materials with good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913

    Article  CAS  Google Scholar 

  2. Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Homes A B 1990 Nature 347 539

    Article  CAS  Google Scholar 

  3. Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, dos Santos D A, Brédas J L, Lögdlund M and Salaneck W R 1999 Nature 397 121

    Article  CAS  Google Scholar 

  4. Baldo M A, Thompson M E and Forrest S R 2000 Nature 403 750

    Article  CAS  Google Scholar 

  5. Wong K -T, Chien Y -Y, Chen R -T, Wang C -F, Lin Y -T, Chiang H -H, Hsieh P -Y, Wu C -C, Chou C H, Su Y O, Lee G -H and Peng S -M 2002 J. Am. Chem. Soc. 124 11576

    Article  CAS  Google Scholar 

  6. Facchetti A, Yoon M -H, Stern C L, Katz H E and Marks T J 2003 Angew. Chem. Int. Ed. 42 3900

    Article  CAS  Google Scholar 

  7. Yang L, Ren A -M, Feng J. -K, Liu X -D, Ma Y -G and Zhang H -X 2004 Inorg. Chem. 43 5961

    Article  CAS  Google Scholar 

  8. Anthony J E 2008 Angew. Chem. Int. Ed. 47 452

    Article  CAS  Google Scholar 

  9. Imahori H, Umeyama T and Ito S 2009 Acc. Chem. Res. 42 1809

    Article  CAS  Google Scholar 

  10. Ning Z and Tian H 2009 Chem. Commun. 5483

  11. Jenekhe S A, Liangde L and Maksudul M A 2001 Macromolecule 34 7315

    Article  CAS  Google Scholar 

  12. Kulkarni A P, Wu P -T, Kwon T W and Jenekhe S A 2005 J. Phys. Chem. B. 109 19584

    Article  CAS  Google Scholar 

  13. Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem. Rev. 103 3899

    Article  Google Scholar 

  14. Yoshihara T, Druzhinin S I and Zachariasse K A 2004 J. Am. Chem. Soc. 126 8535

    Article  CAS  Google Scholar 

  15. Förster T. 1969 Angew. Chem. Intl. Ed. 8 333

    Article  Google Scholar 

  16. Jenekhe S A and Osaheni J A 1994 Science 265 765

    Article  CAS  Google Scholar 

  17. Gao Z Q, Lee C S, Bello I, Lee S T, Chen R M, Luh T Y, Shi J and Tang C W 1999 Appl. Phys. Lett. 74 865

    Article  CAS  Google Scholar 

  18. Gao Z Q, Lee C S, Bello I, Lee S T, Wu S K, Yan Z L and Zhang X H 1999 Synth. Met. 105 141

    Article  CAS  Google Scholar 

  19. Bernardo G, Esteves M A, Guerreiro A M, Gigante B and Morgado J 2008 Opt. Mater. 31 320

    Article  CAS  Google Scholar 

  20. Iyer A, Bjorgaard J, Anderson T and Köse M E 2012 Macromolecules 45 6380

    Article  CAS  Google Scholar 

  21. Chandrasekaran Y, Dutta G K, Kanth R B and Patil S 2009 Dyes Pigm. 83 162

    Article  CAS  Google Scholar 

  22. Hirayamaa T, Yamasakia S, Amekub H, Tsutomu I, Thiemannc T and Mataka S 2005 Dyes Pigm. 67 105

    Article  Google Scholar 

  23. Reddy M A, Thomas A Mallesham G, Sridhar B, Rao V J and Bhanuprakash K 2011 Tetrahedron Lett. 52 6942

    Article  CAS  Google Scholar 

  24. Son H -J, Han W -S, Wee K -R, Yoo D -H, Lee J -H, Kwon S -N, Ko J and Kang O S 2008 Org. Lett. 23 5401

    Article  Google Scholar 

  25. Thomas K R J, Huang T-H, Lin J T, Pu S-C, Cheng Y-M, Hsieh C-C and Chou P-T 2008 Chem.–Eur. J. 14 11231

  26. Jandke M, Strohriegl P, Berleb S, Werner E and Brutting W 1998 Macromolecules 31 6434

    Article  CAS  Google Scholar 

  27. Zhang K Y, Po-Yam L. S, Zhu N, Or I W -S, Cheung M S -H, Lam Y -W and Kenneth K -W L. 2010 Inorg. Chem. 49 2530

    Article  CAS  Google Scholar 

  28. Unver E K, Tarkuc S, Baran D, Tanyeli C and Toppare L 2011 Tetrahedron Lett. 52 2725

    Article  CAS  Google Scholar 

  29. Wang X, Zhou Y, Lei T, Hu N, Chen E -Q and Pei J 2010 Chem. Mater. 22 3735

    Article  CAS  Google Scholar 

  30. Danel A, Gondek A and Kityk I 2009 Opt. Mater. 32 267

    Article  CAS  Google Scholar 

  31. Kim S K, Yang B, Park Y I, Ma Y J -Y and Lee H -J K 2009 Org. Electron. 10 822

    Article  CAS  Google Scholar 

  32. Yang B, Kim S K, Xu H, Park Y -I, Zhang H -Y, Gu C, Shen F Z, Wang C L, Liu D D, Liu X D, Hanif M, Tang S, Li W J, Li S F, Shen J C, Park J W and Ma Y -G 2008 Chem. Phys. Chem. 9 2601

    CAS  Google Scholar 

  33. Noine K, Pu Y -J and Nakayama Kido K -I 2010 Org. Electron. 11 717

    Article  CAS  Google Scholar 

  34. Kwon Y S, Lee K H, Young K G, Seo J H, Kim Y K and Yoont S S 2009 J. Nanosci. Nanotechnol. 9 7056

    CAS  Google Scholar 

  35. Thomas K R J, Velusamy M, Lin J T, Chuen C H and Tao Y T 2005 J. Mater. Chem. 15 4453

    Article  CAS  Google Scholar 

  36. Jia W L, McCormick T, Liu Q D, Fukutani H, Motala M, Wang R -Y, Tao Y and Wang S 2004 J. Mater. Chem. 14 3344

    Article  CAS  Google Scholar 

  37. Shen J -Y, Yang X -L, Huang T -H, Lin J T, Ke T -H, Chen L -Y, Wu C -C and Yeh P 2007 Adv. Funct. Mater. 17 983

    Article  CAS  Google Scholar 

  38. Thomas K R J, Velusamy M, Lin J T, Tao Y T and Chuen C -H 2004 Adv. Funct. Mater. 14 387

    Article  CAS  Google Scholar 

  39. Huang T -H, Lin J T, Chen L -Y, Lin Y -T and Wu C -C 2006 Adv. Mater. 18 602

    Article  CAS  Google Scholar 

  40. Thomas K R J, Huang T -H, Lin J T, Pu S -C, Cheng Y -M, Hsieh C -C and Chou P -T 2008 Chem – Eur. J. 14 11231

    Article  CAS  Google Scholar 

  41. Thomas K R J, Lin J T, Tao Y -T and Chuen C -H 2002 Adv. Mater. 14 822

    Article  CAS  Google Scholar 

  42. Thomas K R J, Lin J T, Tao Y -T and Chuen C -H 2002 Chem. Mater. 14 2796

    Article  CAS  Google Scholar 

  43. Thomas K R J, Lin J T, Tao Y -T and Chuen C -H 2004 Chem. Mater. 16 5437

    Article  CAS  Google Scholar 

  44. Harwood L M, Moody C J and Percy J M 1999 In Experimental Organic Chemistry: Principles and Practice (Blackwell: Oxford, UK)

  45. Katsuta S 1994 Chem. Lett. 1239

  46. Bond A M, Henderson T L E, Mann D R, Thormann W and Zoski C G 1988 Anal. Chem. 60 1878

    Article  CAS  Google Scholar 

  47. Hartwig J F 2006 Synlett 9 1283

    Article  Google Scholar 

  48. Buchwald S L and Surry D S 2011 Chem. Sci. 2 27

    Article  Google Scholar 

  49. Chiu K Y, Su T X, Li J H, Lin T -H, Liou G S and Cheng S -H 2005 J. Electroanal. Chem. 575 95

    Article  CAS  Google Scholar 

  50. Armand J, Boulares L, Bellec C and Pinson J 1982 Can. J. Chem. 60 2797

    Article  CAS  Google Scholar 

  51. Yu M X, Duan J P, Lin C H, Cheng C H and Tao Y T 2002 Chem. Mater. 14 3958

    Article  CAS  Google Scholar 

  52. Wu C, Djurovich P I and Thompson M E 2009 Adv. Func. Mater. 19 3157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Micro-Analytical Laboratory, Department of Chemistry, and University of Mumbai for providing Instrumental facilities. One of the authors (Azam M. Shaikh) is grateful to University Grants Commission, India for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJESH M KAMBLE.

Additional information

Supplementary Information

All additional information pertaining to compounds 26, namely, absorption and emission spectra in CH2Cl2, CHCl3 and solid thin films (figures S1 and S2), Chromaticity diagrams (figures S3), Cyclic voltammograms (cathodic sweep) (figures S4 and S5), DTA plot (figure S6), HRMS spectra (figure S7), FTIR spectra (figure S8), 1H and 13C NMR spectra (figures S9 and S10), Photographs (figures S11 and S12) are given in the supporting information. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 15.1 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHAIKH, A.M., SHARMA, B.K. & KAMBLE, R.M. Synthesis, Photophysical, Electrochemical and Thermal Studies of Triarylamines based on benzo[g]quinoxalines. J Chem Sci 127, 1571–1579 (2015). https://doi.org/10.1007/s12039-015-0904-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0904-0

Keywords

Navigation