Skip to main content
Log in

Mathematical description of the nonlinear chemical reactions with oscillatory inflow to the reaction field

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this paper the arduous attempt to find a mathematical solution for the nonlinear autocatalytic chemical processes with a time-varying and oscillating inflow of reactant to the reaction medium has been taken. Approximate analytical solution is proposed. Numerical solutions and analytical attempts to solve the non-linear differential equation indicates a phase shift between the oscillatory influx of intermediate reaction reagent X to the medium of chemical reaction and the change of its concentration in this medium. Analytical solutions indicate that this shift may be associated with the reaction rate constants k 1 and k 2 and the relaxation time τ. The relationship between the phase shift and the oscillatory flow of reactant X seems to be similar to that obtained in the case of linear chemical reactions, as described previously, however, the former is much more complex and different. In this paper, we would like to consider whether the effect of forced phase shift in the case of nonlinear and non-oscillatory chemical processes occurring particularly in the living systems have a practical application in laboratory.

Approximate analytical solution is proposed for the nonlinear autocatalytic chemical processes with a time-varying and oscillating inflow of reactant to the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Nicolis G, Prigogine I 1977 In Self-organization in non-equilibrium systems. From dissipative structures to order through fluctuations (New York: Wiley and Sons)

  2. Scott S K 1991 In Chemical chaos (Oxford: Clarendon Press)

  3. Paul N and Joyce G F 2002 Proc. Natl. Acad. Sci. USA 9 12733

    Article  Google Scholar 

  4. Lee D H, Granja J R, Martinez J A, Severin K and Ghadri M R 1996 Nature 382 525

    Article  CAS  Google Scholar 

  5. Eigen M 1996 Biophys. Chem. 63 A1–18

    Article  CAS  Google Scholar 

  6. Witzemann E J 1924 J. Phys. Chem. 28 305

    Article  Google Scholar 

  7. Drummond P D, Vaughan T G and Drummond A 2010 J. Phys. Chem. 114 10481

    Article  CAS  Google Scholar 

  8. Pompano R R, Li H -W and Ismagilov R F 2008 Biophys. J. 9 1531

    Article  Google Scholar 

  9. Toth R, Gaspar V, Belmonte A, O’Connell M C, Taylorc A and Scott S K 2000 Phys. Chem. Chem. Phys. 2 413

    Article  CAS  Google Scholar 

  10. Wu Y, Vasquez D A, Edwards B F and Wilder J W 1995 Phys. Rev. E 51 1119

    Article  CAS  Google Scholar 

  11. Belousov B P 1985 In A Periodic Reaction and Its Mechanism in Oscillations and Traveling Waves in Chemical Systems. R J Field, M Burger (eds.) (New York: Wiley) pp. 605–613

  12. Benini O, Cervellati R and Fetto P 1996 J. Chem. Ed. 73 865

    Article  CAS  Google Scholar 

  13. Vanag V K, Zhabotinsky A M and Epstein I R 2000 J. Phys. Chem. A 104 11566

    Article  CAS  Google Scholar 

  14. Asai T, Kanazawa Y, Hirose T and Amemiya Y 2005 Int. J. Unconv. Comput. 1 123

    Google Scholar 

  15. Qiao C., Wang H and Ouyang Qi 2009 Phys. Rev. E 79 016212

    Article  Google Scholar 

  16. Flesselles J M, Belmonte A and Gaspar V 1998 J. Chem. Soc. Faraday Trans. 94 (7) 851

    Article  CAS  Google Scholar 

  17. Chance B, Pye E K Ghosh A K and Hess B 1973 In Biological and Biochemical Oscillators (New York: Academic Press)

  18. Lengyel I, Nagy I and Bazsa G 1989 J. Phys. Chem. 93 2801

    Article  CAS  Google Scholar 

  19. Edblom E C, Orbán M and Epstein I R 1986 J. Am. Chem. Soc. 108 2826

    Article  CAS  Google Scholar 

  20. Showalter K 1981 J. Phys. Chem. 85 (4) 440

    Article  CAS  Google Scholar 

  21. Gribschaw T A, Showalter K, Banvilla D L and Epstein I R 1038 J. Phys. Chem. 8 2152

    Google Scholar 

  22. Gowland R J and Stedman G J 1983 Chem. Soc. Chem. Commun. 1038

  23. Bazsat G and Epstein I R 1985 J. Phys. Chem. 8 3050

    Article  Google Scholar 

  24. Sakai K, Rien S and Schwartz L B 1996 J. Clin. Invest. 97 988

    Article  CAS  Google Scholar 

  25. Dateo C E, Orbán M, De Kepper P and Epstein I R 1982 J. Am. Chem. Soc. 104 504

    Article  CAS  Google Scholar 

  26. Paul N and Joyce G F 2004 Chemical Biology 8 634

    CAS  Google Scholar 

  27. Field R J and Noyes R M 1974 J. Am. Chem. Soc. 96 2001

    Article  CAS  Google Scholar 

  28. Showalter K, Noyes R M and Turner H 1979 J. Am. Chem. Soc. 101 7463

    Article  CAS  Google Scholar 

  29. Jorne J 1980 J. Am. Chem. Soc. 102 6196

    Article  CAS  Google Scholar 

  30. Gribschaw T A, Showalter K, Banville D L and Epstein I R 1981 J. Phys. Chem. 85 2152

    Article  CAS  Google Scholar 

  31. Weitz D M and Epstein I R 1984 J. Phys. Chem. 88 5300

    Article  CAS  Google Scholar 

  32. Szirovicza L, Nagypal I and Boga E 1989 J. Am. Chem. Soc. 111 2842

    Article  CAS  Google Scholar 

  33. Reusser E J and Field R J 1979 J. Am. Chem. Soc. 101 1063

    Article  CAS  Google Scholar 

  34. Decroly O and Goldbeter A 1985 J. Theoret. Biol. 113 649

    Article  CAS  Google Scholar 

  35. Decroly O and Goldbeter A 1987 J. Theoret. Biol. 124 219

    Article  CAS  Google Scholar 

  36. Decroly O and Goldbeter A 1984 Physics Letters 105A 259

    Article  CAS  Google Scholar 

  37. Györgi L and Field R J 1992 Nature 355 808

    Article  Google Scholar 

  38. Eigen M and Schuster P 1979 In The Hypercycle: A Principle of Natural Self-Organization (Berlin: Springer-Verlag)

  39. Petrov V, Scott S K and Showalter K 1992 J. Chem. Phys. 97 6191

    Article  CAS  Google Scholar 

  40. Rlnzel J and Ermentrout G B 1982 J. Phys. Chem. 86 295441

    Google Scholar 

  41. Hanna A, Saul A and Showalter K 1982 J. Am. Chem. Soc. 104 3838

    Article  CAS  Google Scholar 

  42. Gáspár V and Showalter K 1990 J. Phys. Chem. 94 4973

    Article  Google Scholar 

  43. Aduda B D and Larter R 1989 J. Chem. Phys. 90 4168

    Article  Google Scholar 

  44. Ortega L A 1998 Journal of Mathematical Analysis and Applications 221 712

    Article  Google Scholar 

  45. Sanchirico R 2012 AIChe Journal 58 1869

    Article  CAS  Google Scholar 

  46. Sumarni A B and Razidah I 2014 In Proceedings of the 2014 International Conference on Mathematical Methods, Mathematical Models and Simulation in Science and Engineering 123 ISBN: 978-1-61804-219-4

  47. Krupska A, Konarski J, Fiedorow R and Adamiec J 2002 Kinetics and Catalysis 43 295

    Article  CAS  Google Scholar 

  48. Laister R 2000 Journal of Mathematical Analysis and Applications 247 588

    Article  Google Scholar 

  49. Camats M, Kokolo M, Heesom K J, Ladomery M and Bach-Elias M 2009 Stat PLoS ONE 4 1

    Article  Google Scholar 

  50. Asai M, Yamaguchi S, Isejima H, Jonouchi M, Moriya T, Shibata S, Kobayashi M and Okamura H 2001 Current Biology 11 1524

    Article  CAS  Google Scholar 

  51. Kauffman S 1995 In At Home in the Universe: The Search for the Laws of Self-Organization and Complexity (Oxford: University Press) (ISBN 0-19-509599-5)

Download references

Acknowledgements

I would like to thank Prof. Jerzy Konarski of Adam Mickiewicz University in Poznan for the initiation of the topic of the mathematical model of oscillatory flow of reagent X to the reaction field in the nonlinear chemical reactions, for writing a program to solve nonlinear differential equations based on Runge-Kutta algorithm and some useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALDONA KRUPSKA.

Appendix

Appendix

Derivation of the approximate solution of the irresolvable nonlinear equation (eqs. (6) and (16)) in this work are based on analytical calculation for the nonlinear autocatalytic reaction with a constant in time inflow of the reactant X to the reaction medium and on the analytical solution for the simple linear reaction with oscillatory, cosine-like inflow of X to the reaction medium described in the ref.[47]

Derivation of Eq. (6) and (16):

The main subject of our consideration is the simplest nonlinear autocatalytic reaction:

$$ A+X \overset{k_{1} k_{2}}{\longleftrightarrow} 2X \quad I_{X} =const. $$
(A1)

where A stands for the initial product, X is the intermediate product, I X denotes constant in time inflow of the intermediate product X to the reaction field (medium).

We assume that the product X flow to the reaction medium If the inflow I X of intermediate product X is constant in time, the kinetic equation (1) has the form:

$$ \frac{dX}{dt}=k_{1} AX-k_{2} X^{2}+I_{X} $$
(A2)

The reaction (2) has the following stationary states:

$$ x_{1} =\frac{k_{1} A+\sqrt {\Delta}} {2k_{2}} \quad x_{1} =\frac{k_{1} A-\sqrt {\Delta}} {2k_{2}} $$
(A3)

where:

$$\begin{array}{@{}rcl@{}} \sqrt {\Delta} &\,=\,&\sqrt {\left({k_{1} A} \right)^{2}+4k_{2} I_{X}}~~\text{in case outflow of}~X {\Delta} > 0\\ &&\text{is always positive} \end{array} $$
(A3a)
$$\begin{array}{@{}rcl@{}} \sqrt {\Delta} &=& \sqrt {\left({k_{1} A} \right)^{2} \,-\, 4k_{2} I_{X}}~~\text{in case inflow of} \\ &&~X {\Delta} >0~\text{or}~{\Delta} < 0 \end{array} $$
(A3b)

We assume that Δ is positive.

The analytical solution of the X product change described by equation (2) takes the form:

$$ X=\frac{k_{1} A-\sqrt {\Delta} - [ { ({k_{1} A+\sqrt {\Delta}} )} ]c\exp \left({\sqrt {\Delta} t} \right)}{2k_{2} [ {({1-c\exp (\sqrt {\Delta} t} )} ]} $$
(A4)

where, pre-exponential factor c is,

$$ c=\frac{-X_{0} 2k_{2} +k_{1} A-\sqrt {\Delta}} {-X_{0} 2k_{2} +k_{1} A+\sqrt {\Delta}} $$
(A5)

X 0– is the initial concentration of the product X. X 0 is calculated from the following initial conditions:when X = X 0t=0 and X 0 takes the form:

$$ X_{0} =\frac{k_{1} A-\sqrt {\Delta} -({k_{1} A+\sqrt {\Delta}} )c}{2k_{2} -c2k_{2}} $$
(A6)

From the equation (4) follows the relaxation time τ for this reaction which takes the form:

$$ \tau =\frac{1}{\sqrt {\Delta}} =\frac{1}{\sqrt {\left({k_{1} A} \right)^{2}-4k_{2} I_{X}} } $$
(A7)

Analytical solution for the linear reactions with oscillatory, cosine-like inflow of intermediate product X to the reaction medium is described in our earlier paper (see ref.[47]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KRUPSKA, A. Mathematical description of the nonlinear chemical reactions with oscillatory inflow to the reaction field. J Chem Sci 127, 1025–1034 (2015). https://doi.org/10.1007/s12039-015-0871-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0871-5

Keywords

PACS Nos

Navigation