Skip to main content
Log in

Simultaneous acquisition of three NMR spectra in a single experiment for rapid resonance assignments in metabolomics

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

NMR-based approach to metabolomics typically involves the collection of two-dimensional (2D) heteronuclear correlation spectra for identification and assignment of metabolites. In case of spectral overlap, a 3D spectrum becomes necessary, which is hampered by slow data acquisition for achieving sufficient resolution. We describe here a method to simultaneously acquire three spectra (one 3D and two 2D) in a single data set, which is based on a combination of different fast data acquisition techniques such as G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. The following spectra are acquired simultaneously: (1) 13C multiplicity edited GFT (3,2)D HSQC-TOCSY, (2) 2D [ 1H- 1H] TOCSY and (3) 2D [ 13C- 1H] HETCOR. The spectra are obtained at high resolution and provide high-dimensional spectral information for resolving ambiguities. While the GFT spectrum has been shown previously to provide good resolution, the editing of spin systems based on their CH multiplicities further resolves the ambiguities for resonance assignments. The experiment is demonstrated on a mixture of 21 metabolites commonly observed in metabolomics. The spectra were acquired at natural abundance of 13C. This is the first application of a combination of three fast NMR methods for small molecules and opens up new avenues for high-throughput approaches for NMR-based metabolomics.

We describe here a first application of a combination of different fast NMR methods to simultaneously acquire three spectra in a single data set. The method combines G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. This opens up new avenues for high-throughput approaches in metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Beckonert O, Keun H C, Ebbels T M, Bundy J, Holmes E, Lindon J C and Nicholson J K 2007 Nat. Protoc. 2 2692

  2. Lindon J C, Nicholson J K, Holmes E and Everett J R 2000 Concept. Magnetic. Res. 12 289

  3. Zheng C, Zhang S, Ragg S, Raftery D and Vitek O 2011 Bioinformatics 27 1637

  4. Lanza I R, Zhang S, Ward L E, Karakelides H, Raftery D and Nair K S 2010 PloS One 5 e10538

  5. Roux A, Lison D, Junot C and Heilier J -F 2011 Clinic. Biochem. 44 119

  6. Gowda G N, Shanaiah N and Raftery D 2012 In Isotope Labeling in Biomolecular NMR (Location: Springer) p. 147

  7. Smolinska A, Blanchet L, Buydens L M C and Wijmenga S S 2012 Anal. Chim. Acta. 750 82

  8. Guennec A L, Giraudeau P and Caldarelli S 2014 Anal. Chem. 86 5946

  9. Mishkovsky M and Frydman L 2009 An. Rev. Phys. Chem. 60 429

  10. Shrot Y, Shapira B and Frydman L 2004 J. Magn. Reson. 171 163

  11. Shapira B, Karton A, Aronzon D and Frydman L 2004 J. Am. Chem. Soc. 126 1262

  12. Shrot Y and Frydman L 2003 J. Am. Chem. Soc. 125 11385

  13. Frydman L, Lupulescu A and Scherf T 2003 J. Am. Chem. Soc. 125 9204

  14. Kupce E, Nishida T and Freeman R 2003 Prog. Nucl. Magn. Reson. Spectr. 42 95

  15. Szyperski T, Wider G, Bushweller J H and Wüthrich K 1993 J. Am. Chem. Soc. 115 9307

  16. Mishkovsky M, Kupce E and Frydman L 2007 J. Chem. Phys. 127

  17. Freeman R and Kupce E 2006 Curr. Analy. Chem. 2 101

  18. Hiller S, Fiorito F, Wuthrich K and Wider G 2005 Proc. Nation. Acad. Sci. USA 102 10876

  19. Kupce E and Freeman R 2003 J. Am. Chem. Soc. 125 13958

  20. Xia Y L, Zhu G, Veeraraghavan S and Gao X L 2004 J. Biomol. NMR 29 467

  21. Kim S and Szyperski T 2004 J. Biomol. NMR 28 117

  22. Kim S and Szyperski T 2003 J. Am. Chem. Soc. 125 1385

  23. Zhang Q, Atreya H S, Kamen D E, Girvin M E and Szyperski T 2008 J. Biomol. NMR 40 157

  24. Franks W T, Atreya H S, Szyperski T and Rienstra C M 2010 J. Biomol. NMR 48 213

  25. Kupče E, Freeman R and John B K 2006 J. Am. Chem. Soc. 128 9606

  26. Kupče E and Kay L E 2012 J. Biomol. NMR 54 1

  27. Bruschweiler R and Zhang F L 2004 J. Chem. Phys. 120 5253

  28. Snyder D A, Zhang F and Brueschweiler R 2007 J.Biomol. NMR 39 165

  29. Schmieder P, Stern A S, Wagner G and Hoch J C 1993 J. Biomol. NMR 3 569

  30. Rovnyak D, Frueh D P, Sastry M, Sun Z Y J, Stern A S, Hoch J C and Wagner G 2004 J. Magn. Reson. 170 15

  31. Hyberts S G, Frueh D P, Arthanari H and Wagner G 2009 J. Biomol. NMR 45 283

  32. Schanda P, Kupce E and Brutscher B 2005 J. Biomol. NMR 33 199

  33. Kern T, Schanda P and Brutscher B 2008 J. Magn. Reson. 190 333

  34. Arnero C, Schanda P, Dura M A, Ayala I, Marion D, Franzetti B, Brutscher B and Boisbouvier J 2009 J. Am. Chem. Soc. 131 3448

  35. Maciejewski M W, Qui H, H Z R. I, Mobli M and Hoch J C 2009 J. Magn. Reson. 199 88

  36. Pudakalakatti S M, Dubey A, Jaipuria G, Shubhashree U, Adiga S, Moskau D and Atreya H S 2014 J. Biomol. NMR 58 165

  37. Ulrich E L, Akutsu H, Doreleijers J F, Harano Y, Ioannidis Y E, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C F, Tolmie D E, Kent Wenger R, Yao H and Markley J L 2008 Nucl. Acid. Resear. 36 D402

  38. Delaglio F, Grzesiek S, Vuister G W, Zhu G, Pfeifer J and Bax A J 1995 Biomol. NMR 6 277

  39. Bartels C, Xia T H, Billeter M, Güntert P and Wüthrich K 1995 J. Biomol. NMR 6 1

  40. Hoch J C, Stern A S, Donoho D L and Johnstone I M 1990 J. Magn. Reson. 86 236

  41. Sanders C R and Prestegard J H 1991 J. Am. Chem. Soc. 113 1987

  42. Hoch J C and Stern A S 1996 In NMR Data Processing 1st edition (New York: Wiley-Liss)

  43. Hoch J C and Stern A S 2001 Nucl. Magn. Reson. Bio. Macromol. Part A 338 159

  44. Orekhov V Y, Ibraghimov I M and Billeter M 2003 J. Biomol. NMR 27 165

  45. Tugarinov V, Kay L E, Ibraghimov I and Orekhov V Y 2005 J. Am. Chem. Soc. 127 2767

  46. Pudakalakatti S M, Chandra K, Thirupathi R and Atreya H S 2014 Chem. Eur. J. 20 15719

Download references

Acknowledgements

The facilities provided by NMR Research Centre supported by Department of Science and Technology (DST), India, is gratefully acknowledged. HSA acknowledges support from DST (Grant no: No. IR/ S0/LU-007/20110/1) and DAE-BRNS research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HANUDATTA S ATREYA.

Additional information

Supplementary Information

Figure S1, chemical shift assignments of metabolites mapped on to the 2D HETCOR spectrum and Table S1, list of chemical shift assignments of the metabolites obtained using the dual receiver experiments are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PUDAKALAKATTI, S.M., DUBEY, A. & ATREYA, H.S. Simultaneous acquisition of three NMR spectra in a single experiment for rapid resonance assignments in metabolomics. J Chem Sci 127, 1091–1097 (2015). https://doi.org/10.1007/s12039-015-0868-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0868-0

Keywords

Navigation