Skip to main content
Log in

Theoretical study on mechanism, kinetics, and thermochemistry of the gas phase reaction of 2,2,2-trifluoroethyl butyrate with OH radicals at 298 K

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A theoretical investigation has been carried out on the mechanism, kinetics, and thermochemistry of gas-phase reaction of 2,2,2-trifluoroethyl butyrate (TFEB, CH3CH2CH2C(O)OCH2CF3) with OH radicals using a modern DFT functional. The involvement of pre- and post-reactive complexes was explored and the reaction profiles were modeled. Energetic calculations were performed using the M06-2X/6-31 + G(d,p) method. The intrinsic reaction coordinate (IRC) calculation has been performed to confirm the smooth transition from the reactant to product through the respective transition state. It has been found that the dominant path of the H-atom abstraction takes place from the –CH2- position, which is attached with the methyl group at the one end of TFEB. Theoretically calculated rate constant at 298 K using canonical transition state theory (CTST) is found to be in reasonable agreement with the experimental data. Using group-balanced isodesmic procedure, the standard enthalpy of formation for TFEB is reported for the first time. The branching ratios of the different reaction channels are also determined. The atmospheric lifetime of TFEB is determined to be 6.8 days.

The reaction kinetics of H-atom abstraction reaction of 2,2,2-trifluoroethyl butyrate (TFEB) with OH radicals was investigated at M06-2X/6-31+G (d,p) level of theory. The branching ratios of the different reaction channels are also determined. The atmospheric lifetime of TFEB is estimated to be 6.8 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Tsai W T 2005 J. Hazard. Mater. 119 69

    Article  CAS  Google Scholar 

  2. Sekiya A and Misaki S 2000 J. Fluorine Chem. 101 215

    Article  CAS  Google Scholar 

  3. Powell R L 2002 J. Fluorine Chem. 114 237

    Article  CAS  Google Scholar 

  4. Bravo I, Dıaz-de-Mera Y, Aranda A, Moreno E, Nutt D R and Marston G 2011 Phys. Chem. Chem. Phys. 13 17185

    Article  CAS  Google Scholar 

  5. Blanco M B, Bejan I, Barnes I, Wiesen P and Teruel M A 2010 Environ. Sci. Technol. 44 (4) 2354

    Article  CAS  Google Scholar 

  6. Oyaro N, Sellevag S R and Neilsen C J 2004 Environ. Sci. Technol. 38 5567

    Article  CAS  Google Scholar 

  7. Jordan A and Frank H 1999 Environ. Sci. Technol. 33 (2) 522

    Article  CAS  Google Scholar 

  8. Ninomiya Y, Kawasaki M, Guschin A, Molina L T, Molina M J and Wallington T J 2000 Environ. Sci. Technol. 34 (14) 2973

    Article  CAS  Google Scholar 

  9. Blanco M B, Barnes I and Teruel M A 2010 J. Phys. Org. Chem. 23 950

    Article  CAS  Google Scholar 

  10. Blanco M B, Bejan I, Barnes I, Wiesen P and Teruel M A 2008 Chem. Phys. Lett. 453 18

    Article  CAS  Google Scholar 

  11. Blanco M B and Teruel M A 2007 Atmos. Environ. 41 (34) 7330

    Article  CAS  Google Scholar 

  12. Blanco M B, Rivela C and Teruel M A 2013 Chem. Phys. Lett. 578 33

    Article  CAS  Google Scholar 

  13. Chakrabartty A K, Mishra B K, Bhattacharjee D and Deka R C 2013 Mol. Phys. 111 860

    Article  CAS  Google Scholar 

  14. Mishra B K, Chakrabartty A K and Deka R C 2013 J. Mol. Model. 19 2189

    Article  CAS  Google Scholar 

  15. Singh H J, Tiwari L and Rao P K 2014 Mol. Phys. 112 1892

    Article  CAS  Google Scholar 

  16. Mishra B K, Chakrabartty A K and Deka R C 2014 Struct. Chem. 25 463

    Article  CAS  Google Scholar 

  17. Mishra B K and Deka R C 2014 Struct. Chem. 25 1475

    Article  Google Scholar 

  18. Mishra B K, Singh H J and Tiwari L 2014 J. Mol. Model. 20 2475

    Article  Google Scholar 

  19. Mishra B K and Deka R C 2014 J. Phys. Chem. A 118 (38) 8779

    Article  CAS  Google Scholar 

  20. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  21. Lily M, Mishra B K and Chandra A K 2014 J. Fluorine Chem. 161 51

    Article  CAS  Google Scholar 

  22. Dinadayalane T C, Paytakov G and Leszczynski J 2013 J. Mol. Model. 19 2855

    Article  CAS  Google Scholar 

  23. Deka R C and Mishra B K 2014 J. Mol. Graph. Model. 53 23

    Article  CAS  Google Scholar 

  24. Sandhiya L, Kolandaivel P and Senthilkumar K 2012 Struct. Chem. 23 1475

    Article  CAS  Google Scholar 

  25. Gour N K, Deka R C, Singh H J and Mishra B K 2014 J. Fluorine Chem. 160 64

    Article  CAS  Google Scholar 

  26. Chakrabartty A K, Mishra B K, Bhattacharjee D and Deka R C 2013 J. Fluorine Chem. 154 60

    Article  CAS  Google Scholar 

  27. Mishra B K, Lily M, Chakrabartty A K, Deka R C and Chandra A K 2014 J. Fluorine Chem. 159 57

    Article  CAS  Google Scholar 

  28. Gonzalez C and Schlegel H B 1989 J. Chem. Phys. 90 2154

    Article  CAS  Google Scholar 

  29. Frisch M J et al. 2009 In Gaussian 09 Revision- B.01 Gaussian, Inc.: Wallingford C T)

  30. Hammond G S 1955 J. Am. Chem. Soc. 77 334

    Article  CAS  Google Scholar 

  31. Laidler K J 2004 In Chemical Kinetics, 3rd edn (New Delhi: Pearson Education)

    Google Scholar 

  32. Johnston H S and Heicklen J 1962 J. Phys. Chem. 66 532

    Article  Google Scholar 

  33. Chuang Y Y and Truhlar D G 2000 J. Chem. Phys. 112 1221

    Article  CAS  Google Scholar 

  34. Kwok E S C and Atkinson R 1995 Atmos. Environ. 29 1685

    Article  CAS  Google Scholar 

  35. Spicer C W, Chapman E G, Finlayson-Pitts B J, Plastridge R A, Hubbe J M, Fast J D and Berkowitz C M 1998 Nature 394 353

    Article  CAS  Google Scholar 

  36. Bravo I, Aranda A, Hurley M D, Marston G, Nutt D R, Shine K P, Smith K and Wallington T J 2010 J. Geophys. Res. 115 D24317

    Article  Google Scholar 

  37. Spivakovsky C M, Logan J A, Montzka S A, Balkanski Y J, Foreman-Fowler M, Jones D B A, Horowitz L W, Fusco A C, Brenninkmeijer C A M, Prather M J, Wofsy S C and McElroy M B 2000 J. Geophys. Res. 105 (D7) 8931

    Article  CAS  Google Scholar 

  38. Chase M W Jr, NIST-JANAF Thermochemical Tables, 4th edition. J. Phys. Chem. Ref. Data 9 1 (1998)

  39. Witter R A and Neta P 1973 J. Org. Chem. 38 484

    Article  CAS  Google Scholar 

  40. Gao H, Wang Y, Wan S Q, Liu J Y and Sun C C 2009 J. Mol. Struct. Theochem. 913 107

    Article  CAS  Google Scholar 

  41. El-Nahas A M, Navarro M V, Simmie J M, Bozzelli J W, Curran H J, Dooley S and Metcalfe W 2007 J. Phys. Chem. A 111 3727

    Article  CAS  Google Scholar 

  42. Csontos J, Rolik Z, Das S and Kallay M 2010 J. Phys. Chem. A 114 13093

    Article  CAS  Google Scholar 

  43. Chen S S, Rodgers A S, Chao J, Wilhoit R C and Zwolinski B J 1975 J. Phys. Chem. Ref. Data 4 441

    Article  CAS  Google Scholar 

  44. Lide D R 2009 In In CRC Handbook of Chemistry and Physics 89th ed. (New York: CRC Press)

    Google Scholar 

Download references

Acknowledgements

BKM is thankful to University Grant Commission (UGC), New Delhi, for providing Dr. D. S. Kothari Post Doctoral Fellowship. NKG and HJS are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BHUPESH KUMAR MISHRA or HARI JI SINGH.

Additional information

Supplementary Information

Harmonic vibrational frequencies of the species, relative energies, calculated partition functions, and IRC plots for transition states at the M06-2X/6-31+G(d,p) level of theory are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 313 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GOUR, N.K., MISHRA, B.K. & SINGH, H.J. Theoretical study on mechanism, kinetics, and thermochemistry of the gas phase reaction of 2,2,2-trifluoroethyl butyrate with OH radicals at 298 K. J Chem Sci 127, 1015–1023 (2015). https://doi.org/10.1007/s12039-015-0860-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0860-8

Keywords

Navigation