Skip to main content
Log in

Ethylene homo- and copolymerization chain-transfers: A perspective from supported (nBuCp) 2 ZrCl 2 catalyst active centre distribution

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Polymerization chain termination reactions and unsaturation of the polymer backbone end are related. Therefore, in this study, the parameters resulting from the modelling of the active centre distribution of the supported catalyst—silica/MAO/(nBuCp)2ZrCl2—were applied to evaluate the active-centre-dependent ethylene homo- and copolymerization rates, as well as the corresponding chain termination rates. This approach, from a microkinetic mechanistic viewpoint, elucidates better the 1-hexene-induced positive comonomer effect and chain transfer phenomenon. The kinetic expressions, developed on the basis of the proposed polymerization mechanisms, illustrate how the active site type-dependent chain transfer phenomenon is influenced by the different apparent termination rate constants and momoner concentrations. The active centre-specific molecular weight M ni (for the above homo- and copolymer), as a function of chain transfer probability, \(p_{CT_{i}}\), varied as follows: \(log\left ({p_{CT_{i}} } \right )=log\left ({mw_{ru}} \right )-log\left ({M_{ni}} \right )\), where mw ru is the molecular weight of the repeat unit. The physical significance of this finding has been explained. The homo- and copolymer backbones showed all the three chain end unsaturations (vinyl, vinylidene, and trans-vinylene). The postulated polymerization mechanisms reveal the underlying polymer chemistry. The results of the present study will contribute to develop in future supported metallocene catalysts that will be useful to synthesize polyethylene precursors having varying chain end unsaturations, which can be eventually used to prepare functional polyethylenes.

The active-centre-dependent ethylene homo- and copolymerization rates and the corresponding chain termination rates support the 1-hexene-induced positive comonomer effect and chain transfer phenomenon from a microkinetic mechanistic viewpoint. The chain transfer probability \(p_{CT_{i}}\) decreased with increasing active centre-specific molecular weight M ni

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme I
Scheme II
Scheme III
Scheme IV

Similar content being viewed by others

References

  1. Atiqullah M, Tinkl M, Pfaendner R, Akhtar M N and Hussain I 2010 Polym. Rev. 50 178

  2. Terao H, Ishii S, Saito J, Matsuura S, Mitani M, Nagai N, Tanaka H and Fujita T 2006 Macromolecules 39 8584

  3. Atiqullah M, Winston M S, Bercaw J E, Hussain I, Fazal A, Al-Harthi M A, Emwas A H M, Khan M J and Hossaen A 2012 Polym. Degrad. Stab. 97 1164

  4. Thorshaug K, Rytter E and Ystenes M 1997 Macromol. Rapid. Commun. 18 715

  5. Thorshaug K, Støvneng J A, Rytter E and Ystenes M 1998 Macromolecules 31 7149

  6. Thorshaug K, Støvneng J A, Rytter E and Ystenes M 2000 Macromolecules 33 8136

  7. Wigum H, Tangen L, Støvneng J A and Rytter E 2000 Jour. Polym. Sci: Part A: Polym. Chem. 38 3161

  8. Lehmus P, Kokko E, Leino R, Luttikhedde H J G, Rieger B and Seppala J V 2000 Macromolecules 33 8534

  9. Bruaseth I, Bahr M, Gerhard D and Rytter E 2005 Jour. Polym. Sci: Part A: Polym. Chem. 43 2584

  10. Białek M 2010 Jour. Polym. Sci: Part A: Polym. Chem. 48 3209

  11. Mehdiabadi S and Soares J B P 2012 Macromolecules 45 1777

  12. Wang W -J, Zhu S and Park S -J 2000 Macromolecules 33 5770

  13. Webb S W, Weist E L, Chiovetta M G, Laurence R L and Conner W C 1991 Can. J. Chem. Eng. 69 665

  14. Martino A D, Broyer J P, Spitz R, Weickert G and McKenna T F L 2005 Macromol. Rapid Commun. 26 215

  15. Silva F M, Broyer J P, Novat C, Lima E L, Pinto J C and McKenna T F L 2005 Macromol. Rapid Commun. 26 1846

  16. Martino A D, Weickert G, Sidoroff F and McKenna T F L 2007 Macromol. React. Eng. 1 338

  17. Severn J R and Chadwick J C 2008 In Tailor-made Polymers: 578 Via Immobilization of Alpha-olefin Polymerization Cat- 579 alysts (Weinheim: Wiley-VCH) p. 113

  18. Choi Y and Soares J B P 2012 Can. J. Chem. Eng. 90 646

  19. Atiqullah M, Akhtar M N, Moman A A, Abu-Raqabah A H, Palackal S J, Al-Muallem H A and Hamed O M 2007 Appl. Catal. A: Gen. 320 134

  20. Białek M and Czaja K 2006 Macromol. Chem. Phys. 207 1651

  21. Grieken R V, Carrero A, Suarez I and Paredes B 2007 Macromol. Symp. 259 243

  22. Lee J S, Yim J H, Jeon J K and Ko Y S 2012 Catal. Today 185 175

  23. Akhtar M N, Atiqullah M, Moman A A, Abu-Raqabah A H and Ahmed N 2008 Macromol. React. Eng. 2 339

  24. Atiqullah M, Anantawaraskul S, Emwas A M, Al-Harthi M A, Hussain I, Ul-Hamid A and Hossaen A 2013 Ind. Eng. Chem. Res. 52 9359

  25. Atiqullah M, Cibulková Z, Černá A, Šimon P, Hussain I, Al-Harthi M A and Anantawaraskul S 2014 Jour. Therm. Anal. Calori. 119 (1) 581

  26. Soares J B P 2007 Macromol. Symp. 257 1

  27. Alghyamah A A and Soares J B P 2009 Macromol. Rapid Commun. 30 384

  28. Anantawaraskul S, Bongsontia W and Soares J B P 2011 Macromol. React. Eng. 8 549

  29. Soares J B P and Hamielec A E 1995 Polymer 36 2257

  30. Wang Q, Song L and Zhao Y L 2001 Macromol. Rapid Commun. 22 1030

  31. Zurek E A 2002 In Theoretical Investigation of the Structure and Function of MAO (Canada: University of Calgary) 609 p. 57

  32. Negureanu L, Hall R W, Butler L G and Simeral L A 2006 Jour. Am. Chem. Soc. 128 16816

  33. Linnolahti M, Severn J R and Pakkanen T A 2008 Angew Chem. Int. Ed. 47 9279

  34. Ystenes M, Eilertsen J L, Jianke L I U, Matthias O H, Rytter E and Stovneng J A 2000 Jour. Polym. Sci. Part A: Polym. Chem. 38 3106

  35. Talsi E P, Semikolenova N V, Panchenko V N, Sobolev A P, Babushkin D E, Shubin A A and Zakharov V A 1999 Jour. Mol. Catal. A: Chem. 139 131

  36. Boudene Z, De Bruin T, Toulhoat H and Raybaud P 2012 Organometallics 31 8312

  37. Huang J and Rempel G L 1995 Prog. Polym. Sci. 20 459

  38. Bohm L L 1984 Jour. Appl. Polym. Sci. 1 279

  39. Shaffer W and Ray W J 1997 Jour. Appl. Polym. Sci. 6 1053

  40. Schnuss A and Reichert K 1990 Makromol. Chem. Rapid Commun. 7 315

  41. Bergstra M F and Günter W 2005 Macromol. Mater. Eng. 290 610

  42. Ystenes M 1991 Jour. Catal. 129 383

  43. Ystenes M 1993 Makromol. Chem. Macromol. Symp. 66 71

  44. DesLauriers P J, Tso C, Youlu Y., Rohlfing D L and McDaniel M P 2010 Appl. Catal. A: Gen. 388 102

  45. Killian C M, Johnson L K and Brookhart M 1997 Organometallics 16 2005

  46. Dang V A, Yu L C, Balboni D, Dall’Occo T, Resconi L, Mercandelli P, Moret M and Sironi A 1999 Organometallics 18 3781

Download references

Acknowledgements

The authors acknowledge the financial support provided by King Abdulaziz City for Science and Technology (KACST) via the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) through Project Number 08-PET90-4 as part of the National Science and Technology Innovation Plan. The technical assistance provided by Center of Refining & Petrochemicals (CRP), Dhahran, Saudi Arabia; NMR Core Laboratory, Thuwal, King Abdullah University of Science & Technology (KAUST), Saudi Arabia; and the Department of Chemical Engineering at KFUPM and the Department of Chemical Engineering at Kasetsart University, Thailand is also gratefully acknowledged. Messrs. Anwar Hossaen and Sarath P. Unnikari are thanked for technical support. The gift of 1-hexene by United Petrochemicals, Al-Jubail is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MUHAMMAD ATIQULLAH.

Appendix A: Kinetic Derivation

Appendix A: Kinetic Derivation

We begin the kinetic derivation by considering the fact that the MAO cocatalyst first monomethylates one of the chloride ligands attached to transition metal (Zr). Next, it abstracts the chloride ligand to generate the active metallocenium cation (Zr+).[17,19,3037]See Equation A1. Reversible complex formation[11,3841]with the transition metal active site, as per the trigger mechanism of Ystenes,[42] is a pre-requisite to propagation. See Equations A2 and A3. As per Ystenes, the coordination site is never free; it is always occupied by a monomer. This complexed monomer gets inserted into the growing polymer chain as soon as another incoming monomer is ready to complex through expansion of the coordination sphere. This associates two monomers with the active centre in the form of a transition state.[37] Equations A4 to A7 represent the post-complexation four-step propagation reactions.Activation:

$$ Zr+MAO\xrightarrow{k_{i}} Zr^{+}\left({metallocenium\;cation} \right)+MAO^{-} $$
(A1)

Reversible complex formation:

$$ Zr^{+}+M_{1}\;{{\rightleftharpoons}_{k_{r1}}^{k_{f1}}}\; Zr^{+}\mathellipsis M_{1} $$
(A2)
$$ Zr^{+}+M_{2} \;{{\rightleftharpoons}_{k_{r2}}^{k_{f2}}}\;Zr^{+}\mathellipsis M_{2} $$
(A3)

Propagation:

$$ P_{n}^{M_{1}} -Zr^{+}+M_{1} \xrightarrow{k_{p11}} P_{n+1}^{M_{1}} -Zr^{+} $$
(A4)
$$ P_{n}^{M_{1}} -Zr^{+}+M_{2} \xrightarrow {k_{p12}} P_{n}^{M_{1}} -M_{2} -Zr^{+} $$
(A5)
$$ P_{n}^{M_{2}} -Zr^{+}+M_{2} \xrightarrow {k_{p22}} P_{n+1}^{M_{2}} -Zr^{+} $$
(A6)
$$ P_{n}^{M2} -Zr^{+}+M_{1} \xrightarrow {k_{p21}} P_{n}^{M_{2}} -M_{1} -Zr^{+} $$
(A7)

The effective ethylene homopolymerization chain transfer reactions, according to Schemes I to III (developed as per the backbone end saturations, determined in this study, by FTIR spectroscopy), and citation in the literature,[2,410]can be written as follows:

$$\begin{array}{@{}rcl@{}} P_{n}^{M_{1}}{}&-&{}Zr^{+}+M_{1} \left({CH_{2} =CH_{2}} \right)\;^{{\underrightarrow {k_{tr,\; \beta -H\to M_{1}}^{vinyl}}}}\; \overset{\equiv}{P}_{n,vinyl} \\ &&+Zr^{+}-CH_{2} -CH_{3} \end{array} $$
(A8)
$$ P_{n}^{M_{1}} -Zr^{+}\;{^{{\underrightarrow {k_{tr,\; \beta -H\to Zr^{+}}^{vinyl}}}}}\; \overset{\equiv}{P}_{n,vinyl} +Zr^{+}-H $$
(A9)
$$ P_{n}^{M_{1}} -Zr^{+}\;{^{{\underrightarrow {k_{tr1,\; \beta -H\to Zr^{+}}^{t-vinylene}}}}}\; \overset{\equiv}{P}_{n,t-vinylene} +Zr^{+}-H $$
(A10)
$$\begin{array}{@{}rcl@{}} &&P_{n}^{M_{1}} -Zr^{+}\,+\,M_{3} \left({macromer} \right)\,{^{{\underrightarrow {k_{tr,\, \beta -H\to M_{3}~}^{vinyledene}}}}}\; \overset{\equiv}{P}_{n,vinyledene}\\ && +Zr^{+}-H \end{array} $$
(A11)

Similarly, the effective ethylene-1-hexene copolymerization chain transfer reactions, according to Scheme IV (developed as per the backbone end saturations, determined in this study, by FTIR spectroscopy), and citation in the literature,[43,44]can be listed as:

$$\begin{array}{@{}rcl@{}} &&P_{n}^{M_{1}} -Zr^{+}+M_{2} (CH_{2} =CH-Bu)\\ &&{~}^{\underrightarrow{k_{tr,\; \beta -H\to M_{2}}^{vinyl} +({Route\;A} )}}\; \overset{\equiv}{{P}_{n,vinyl}} +Zr^{+}-H \end{array} $$
(A12)
$$\begin{array}{@{}rcl@{}} &&P_{n}^{M_{1}} -Zr^{+}+M_{2} ({CH_{2} =CH-Bu})\\ &&{~}^{\underrightarrow{k_{tr2,\; \beta -H\to Zr^{+}}^{t-vinylene}({Route\;B} )}}\; \overset{\equiv}{{P}_{n,t-vinylene}} +Zr^{+}-H \end{array} $$
(A13)
$$\begin{array}{@{}rcl@{}} &&P_{n}^{M_{1}} -Zr^{+}+M_{2} \left({CH_{2} =CH-Bu} \right)\\ &&{~}^{{\underrightarrow{k_{tr,\; \beta -H\to Zr{^{+}}}^{vinyledene} ({Route\;C} )}}} \overset{\equiv}{{P}_{n,vinyledene}} +Zr^{+}-H\\ \end{array} $$
(A14)

From Equations A2 and A3, as per steady state assumption, we can write the following:

$$ \frac{d\left[ {M_{1} -Zr^{+}} \right]}{dt}=k_{f_{1}} \left[ {Zr^{+}} \right]\left[ {M_{1}} \right]-k_{r_{1}} \left[ {M_{1} -Zr^{+}} \right]=0 $$
(A15)
$$ \frac{d\left[ {M_{2} -Zr^{+}} \right]}{dt}=k_{f_{2}} \left[ {Zr^{+}} \right]\left[ {M_{2}} \right]-k_{r_{2}} \left[ {M_{2} -Zr^{+}} \right]=0 $$
(A16)

According to long chain hypothesis, we next derive the following:

$$\begin{array}{@{}rcl@{}} &&\left[ {M_{1} -Zr^{+}} \right]=\left[ {P_{n}^{M_{1}} -Zr^{+}} \right]=\frac{k_{f_{1}} } {k_{r_{1}} } \left[ {Zr^{+}} \right]\left[ {M_{1}} \right]\\ &&\hspace*{0.8pc}=k_{1} \left[ {Zr^{+}} \right]\left[ {M_{1}} \right];\quad k_{1} =\frac{k_{f_{1}} } {k_{r_{1}} } \end{array} $$
(A17)
$$\begin{array}{@{}rcl@{}} &&\left[ {M_{2} -Zr^{+}} \right]=\left[ {P_{n}^{M_{2}} -Zr^{+}} \right]=\frac{k_{f_{2}} } {k_{r_{2}} } \left[ {Zr^{+}} \right]\left[ {M_{2}} \right]\\ &&\hspace*{0.8pc}=k_{2} \left[ {Zr^{+}} \right]\left[ {M_{2}} \right];\quad k_{2} =\frac{k_{f_{2}} } {k_{r_{2}} } \end{array} $$
(A18)

At small time scale, the total concentration of active sites is constant. Therefore, we can write:

$$ C_{t} =\left[ {Zr^{+}} \right]+\left[ {P_{n}^{M_{1}} -Zr^{+}} \right]+\left[ {P_{n}^{M_{2}} -Zr^{+}} \right] $$
(A19)

Using Equations A17 to A19, we can write the following:

$$ \left[ {Zr^{+}} \right]\left({uncomplexed} \right)=\frac{1}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2} } \right]}\times C_{t} $$
(A20)
$$\begin{array}{@{}rcl@{}} \left[ {P_{n}^{M_{1}} -Zr^{+}} \right]\left({complexed} \right)&=&\frac{k_{1} \left[ {M_{1}} \right]}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\\ &&\times C_{t} \end{array} $$
(A21)
$$\begin{array}{@{}rcl@{}} \left[ {P_{n}^{M_{2}} -Zr^{+}} \right]\left({complexed} \right)&=&\frac{k_{2} \left[ {M_{2}} \right]}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\\ &&\times C_{t} \end{array} $$
(A22)

Now, we deduce the desired kinetic rate expressions for ethylene homopolymerization. Using Equations A4 and A22, we can write the following expressions:

$$ C_{t,homopolym}=\left[ {Zr^{+}} \right]+\left[ {P_{n}^{M_{1}} -Zr^{+}} \right];\;\left[ {M_{2}} \right]=0 $$
(A23)
$$\begin{array}{@{}rcl@{}} &&R_{p,homopolym} =-\frac{d\left[ {M_{1}} \right]}{dt}=k_{p11} \left[ {P_{n}^{M_{1}} -Zr^{+}} \right]\left[ {M_{1}}\right]\\ &&\hspace*{3.7pc}=\frac{k_{p11} k_{1} \left[ {M_{1}} \right]^{2}}{1+k_{1} \left[ {M_{1}} \right]}\times C_{t,homopolym} \end{array} $$
(A24)

Considering Equations A8 to A11, and A21, we write ethylene homopolymerization termination rate as follows:

$$\begin{array}{@{}rcl@{}} R_{tr,homopolym}&=&\left(k_{tr,\; \beta -H\to M_{1}}^{vinyl} \left[ {M_{1}} \right]+k_{tr,\; \beta -H\to Zr^{+}}^{vinyl}\right.\\ &&\left.~+k_{tr1,\; \beta -H\to Zr^{+}}^{t-vinylene} +k_{tr,\; \beta -H\to M_{3}}^{vinyledene}\left[ {M_{3}} \right] \right)\\ &&\times \frac{k_{1} \left[ {M_{1}} \right]}{1+k_{1} \left[ {M_{1}} \right]}\times C_{t,homopolym} \end{array} $$
(A25)

Using \(\frac {mw_{ru}} {M_{n,homopolym}} =\frac {R_{tr,homopolym}} {R_{p,homopolym}} =\frac {1}{l_{n,homopolym}} \), and Equations A23 and A24, we write the following final expression:

$$\begin{array}{@{}rcl@{}} \frac{1}{l_{n,homopolym}}&=&\frac{k_{tr,\;\; \beta -H\to M_{1}}^{vinyl}} {k_{p11}} \\ &&+\frac{k_{tr,\; \beta -H\to Zr^{+}}^{vinyl} +k_{tr1,\; \beta -H\to Zr^{+}}^{t-vinylene}} {k_{p11}}\\ &&\times \frac{1}{\left[ {M_{1}}\right]}+ \frac{k_{tr,\; \beta -H\to M_{3}}^{vinyledene}} {k_{p11}} \times \frac{\left[ {M_{3}} \right]}{\left[{M_{1}} \right]}\\ \end{array} $$
(A26)

Next, we develop the final expression for \(\frac {1}{l_{n,copolym}}\). In this regard, considering Equations A4 to A7, we write the copolymerization rates for M1 and M2 as follows:

$$\begin{array}{@{}rcl@{}} R_{p_{1}}&=&-\frac{d\left[ {M_{1}} \right]}{dt}=k_{p11} \left[ {P_{n}^{M_{1}} -Zr^{+}} \right]\left[ {M_{1}} \right]\\ &&+k_{p21} \left[ {P_{n}^{M_{2}} -Zr^{+}} \right]\left[ {M_{1}} \right] \end{array} $$
(A27)
$$\begin{array}{@{}rcl@{}} R_{p2}&=&-\frac{d\left[ {M_{2}} \right]}{dt}=k_{p22} \left[ {P_{n}^{M_{2}} -Zr^{+}} \right]\left[ {M_{2}} \right]\\ &&+k_{p12} \left[ {P_{n}^{M_{1}} -Zr^{+}} \right]\left[ {M_{2}} \right] \end{array} $$
(A28)

Using Equations A21 and A22, we write the above equations, respectively, as follows:

$$ R_{p_{1}} =\frac{k_{p11} k_{1} \left[ {M_{1}} \right]^{2}+k_{p21} k_{2} \left[ {M_{1}} \right]\left[ {M_{2}} \right]}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\times C_{t} $$
(A29)
$$ R_{p_{2}} =\frac{k_{p22}\,k_{2} \left[ {M_{2}} \right]^{2}+k_{p12}\, k_{1} \left[ {M_{1}} \right]\left[ {M_{2}} \right]}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\times C_{t} $$
(A30)

Eqs. A29 and A30 lead to the following:

$$ R_{p,copolym} =\frac{k_{p11} \,k_{1} \left[ {M_{1}} \right]^{2}+\left({k_{p21} \,k_{2} +k_{p12} \,k_{1}} \right)\left[ {M_{1}} \right]\left[ {M_{2}} \right]+k_{p22} \,k_{2} \left[ {M_{2}} \right]^{2}\;}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\times C_{t} $$
(A31)

Applying Equations A12 to A14, and A21, we can write the overall copolymerization termination rate as follows:

$$\begin{array}{@{}rcl@{}} R_{tr,copolym}&=&\left(k_{tr,\; \beta -H\to M_{2}}^{vinyl} +k_{tr2,\; \beta -H\to Zr^{+}}^{t-vinylene} \right.\\ &&\left.+k_{tr,\; \beta -H\to Zr^{+}}^{vinyledene} \right)\\ &&\times\frac{k_{1} \left[ {M_{1}} \right]\left[ {M_{2}} \right]}{1+k_{1} \left[ {M_{1}} \right]+k_{2} \left[ {M_{2}} \right]}\times C_{t} \end{array} $$
(A32)

Using Equations A29 and A30, we finally write:

$$ \frac{1}{l_{n,copolym}} =\frac{\left({k_{tr,\; \beta -H\to M_{2}}^{vinyl} +k_{tr2,\; \beta -H\to Zr^{+}}^{t-vinylene} +k_{tr,\; \beta -H\to Zr^{+}}^{vinyledene}} \right)k_{1}} {\left({k_{p12} \,k_{1}} \right)r_{1} \frac{\left[ {M_{1}} \right]}{\left[ {M_{2}} \right]}+\left({\frac{k_{p11} \,k_{1}} {r_{1}} +\frac{k_{p22} \,k_{2}} {r_{2}} } \right)+\left({k_{p21} \,k_{2}} \right)r_{2} \frac{\left[ {M_{2}} \right]}{\left[ {M_{1}} \right]}} $$
(A33)

where \(r_{1} =\frac {k_{p11}}{k_{p12}} \) and \(r_{2} =\frac {k_{p22}}{k_{p21}} \) are the reactivity ratios of M1 and M2, respectively.

Note that under the present situation, the concentration of a given active site type is not known. Therefore, all the aforesaid rate constants should be considered to be apparent rate constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ATIQULLAH, M., AL-HARTHI, M.A., ANANTAWARASKUL, S. et al. Ethylene homo- and copolymerization chain-transfers: A perspective from supported (nBuCp) 2 ZrCl 2 catalyst active centre distribution. J Chem Sci 127, 717–728 (2015). https://doi.org/10.1007/s12039-015-0828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0828-8

Keywords

Navigation