Skip to main content
Log in

LaCl3.7H2O: An efficient catalyst for the synthesis of phosphinates (Michaelis–Arbuzov reaction) under neat conditions and their potential antimicrobial activity

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3al) through Michaelis–Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1al) with dimethyl phenylphosphonite (2) under N2 atmosphere using a heterogeneous catalyst, LaCl3.7H2O. The advantages of the developed procedure are good yields (80–89%) of the products, less reaction time (2–3 h), avoiding toxic catalysts and harmful solvents and easy work-up procedure. Further, antimicrobial activity of the synthesized compounds was evaluated at different concentrations 50, 100 and 150 μg/mL. Biological data revealed that compounds 3i, 3j and 3h, 3j exhibited potential antibacterial and antifungal activities, respectively, while the rest of the compounds showed moderate antimicrobial activity.

An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates through Michaelis–Arbuzov reaction using a heterogeneous catalyst, LaCl3.7H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. (a) Schug K A and Linder W 2005 Chem. Rev. 105 64; (b) Moonen K, Laureyn I and Stevens C V 2004 Chem. Rev. 104 6177; (c) Palacios F, Alonso C and Santos J M 2004 Curr. Org. Chem. 8 1481

  2. (a) Thottathil J K, Przybyla C A and Moniot J L 1984 Tetrahedron Lett. 25 4737; (b) Allen M C, Fuhrer W, Tuck B, Wade R and Wood J M 1989 J. Med. Chem. 32 1652; (c) Malachowski W P and Coward J K 1994 J. Org. Chem. 59 7625

  3. Wang L S, Kang H B, Wang S B, Liu Y and Wang R 2007 Fluid Phase. Equilibr. 258 99

  4. Lligadas G, Ronda J C, Galia M and Cadiz V J 2006 Polym. Sci. Part A: Polym. Chem. 44 5630

    Google Scholar 

  5. Hwang M, Ha H Y and Kim D J 2008 Membr. Sci. 325 647

  6. (a) Frank A W 1961 Chem. Rev. 61 389; (b) Shiau T P, Erlanson D A and Gordon E M 2006 Org. Lett. 8 5697

  7. Alibert S, Santelli-Rouvier C, Castaing M, Berthelot M, Spengler G, Molnar J and Barbe J 2003 Eur. J. Med. Chem. 38 253

  8. Herrin T R, Fairgrieve J S, Bower R R and Shipkowitz N L 1977 J. Med. Chem. 20 660

    Google Scholar 

  9. (a) Kuhkar V P and Hudson H R 2000 Synthesis of ∝-Aminoalkanephosponic and ∝-Aminophosphonic Acids (ed.) (Chichester, UK: John Wiley), pp. 537–555; (b) Kafarski P and Lejczak B 2001 Anticancer Agents Med. Chem. 1 301; (c) Berlicki L and Kafarski P 2005 Curr. Org. Chem. 9 1829; (d) Redmore D 1976 In Topics in phosphorus chemistry (eds) E J Griffith and M Grayson (New York: John Wiley) vol. 8, p. 515

  10. (a) Fernandez M F, Vlaar C P, Fan H, Liu Y H, Fronczek F R and Hammer R P 1995 J. Org. Chem. 60 7390; (b) Shi E and Pei C 2004 Synthesis 18 2995

  11. (a) Han L B and Zhao C Q 2005 J. Org. Chem. 70 10121; (b) Stockland R A, Taylor R I, Thomphson L E and Patel P B 2005 Org. Lett. 7 851; (c) Hirai Tand Han L B 2007 Org. Lett. 9 53

  12. Francois R A, Agnes A, Stephanie B, Catherine C, Thierry C, Jocelyn J, Chiara M, Barbara P, Luana V, Michel L, Arlene R, Maria S, David S, Richard S and Cyril B D 2011 J. Med. Chem. 54 392

    Google Scholar 

  13. (a) Hartley F H (ed.) 1996 The chemistry of organophosphorus compounds (New York: Wiley); (b) Battacharya A K and Thyagarajan G 1981 Chem. Rev. 81 415

  14. (a) Michaelis A and Kaehene R 1898 Cheme. Ber. 31 1408; (b) Arbuzov A E 1906 J. Russ. Phys. Chem. Soc. 38 687

  15. Renard P Y, Varon P, Leclerc E, Valleix A and Mioskowski C 2003 Angew. Chem. 42 2389

  16. Ogawa T, Usuki N and Ono N 1998 J. Chem. Soc. Perkin Trans. 1 2953

    Google Scholar 

  17. (a) Xu Y, Xia J and Guo H 1986 Synthesis 691; (b) Xu Y, Wei H, Zhang J and Huang G 1989 Tetrahedron Lett. 30 949

  18. Arbuzov A E 1906 J. Russ. Phys. Chem. Soc. 38 687

    Google Scholar 

  19. Arbuzov B A 1964 Pure Appl. Chem. 9 307

    Google Scholar 

  20. Bhathcharya A R and Thyagarajan G 1981 Chem. Rev. 81 415

    Google Scholar 

  21. Narasimhulu M, Reddy T S, Mahesh K C, Reddy S M, Reddy A V and Venkateswarlu Y 2007 J. Mol. Catal. A. 264 288

  22. Lu J, Bai Y, Wang Z, Yang B and Ma H 2000 Tetrahedron Lett. 41 9075

  23. (a) Imamoto T 1994 In Lanthanides in organic synthesis (New York: Academic Press); (b) Kobayashi S 1994 Synlett 689; (c) Molander G A 1992 Chem. Rev. 92 29

  24. Carran R, Maran A, Montero, Femadozlago L and Dominguez A 1987 Plants Med. Phyto. 21 195

  25. Arima H, Ashida H and Danno G I 2002 Biosci. Biotechnol. Biochem. 66 1014

    Google Scholar 

  26. Miah M A T, Ahmed H U, Sharma N R, Ali A and Miah S A 1990 Bangladesh. J. Bot. 19 5

  27. Quin L D and Verkade J G 1994 Phosphorus-31 NMR spectral properties compound characterization and structural analysis (New York: VCH Publishers) p. 450

Download references

Acknowledgments

The author, GM thanks the University Grants Commission (UGC), New Delhi, for the award of UGC-Junior Research Fellowship (JRF). SR, and DSR are thankful to the UGC, New Delhi, for awarding Junior Research Fellowship (JRF) under the scheme of Basic Scientific Research Programme (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NAGA RAJU CHAMARTHI.

Additional information

Supplementary information

The electronic supplementary information consists of antibacterial data (table S1, figures S1 and S2) and antifungal data (table S2 and figure S3) can be seen in www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 228 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

GOLLA, M., SYED, R., KATLA, V.R. et al. LaCl3.7H2O: An efficient catalyst for the synthesis of phosphinates (Michaelis–Arbuzov reaction) under neat conditions and their potential antimicrobial activity. J Chem Sci 126, 117–125 (2014). https://doi.org/10.1007/s12039-013-0550-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0550-3

Keywords

Navigation