Skip to main content
Log in

A heterogeneous catalyst, SiO2-ZnBr2: An efficient neat access for α-aminophosphonates and antimicrobial activity evaluation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An efficient, environmentally benign and green method was developed for the synthesis of α-aminophosphonates by one-pot three-component reaction (Kabachnik-Fields reaction) of amine (4-(4-chlorophenoxy)aniline), aldehydes and diethyl phosphite using catalyst, SiO2-ZnBr 2 under solvent-free conditions. The developed method under conventional conditions was further optimized in microwave and ultrasonication methods. A series of α-aminophosphonates, diethyl (4-(4-chlorophenoxy)phenylamino)(aryl/ heteroaryl)methylphosphonates was synthesized to check the generality. The catalyst, SiO2-ZnBr2 afforded good yields of products in all the methods in the range of 85–97% but variation was observed in reaction time. Microwave irradiation method took very less time (4–8 min) as compared with ultrasonication (35–52 min) and conventional (2–3 h) conditions. The major advantages are simple and mild conditions, short reaction times, high yield of the product with purity, use of cheap catalyst and reusability of the catalyst until to three times without significant loss of activity. Antibacterial and antifungal activities were evaluated for the title compounds (50 and 100 μg/mL) including minimum inhibitory concentrations. A few of the newly synthesized α-aminophosphonates exhibited promising antimicrobial activity at lower MIC values in the range of 15.0–25.0 μg/mL and closer to the standards (5–12 μg/mL).

An efficient, neat and green method was developed for α-aminophosphonates by Kabachnik-Fields reaction using catalyst, SiO2-ZnBr2. The developed method under conventional conditions was further optimized in microwave and ultrasonication methods. SiO2-ZnBr2 catalyst afforded good yields of the products (85-97%). Molecules were evaluated for antimicrobial activity including their MIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1.
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Baldwin C and Williams J M J 1995 Tetrahedron: Asymmetry 6 679

    Article  CAS  Google Scholar 

  2. Shang Z Q, Chen R Y and Huang Y 2007 Heteroat. Chem. 18 230

    Article  CAS  Google Scholar 

  3. (a) Kafarski P and Lejczak B 2001 Curr. Med. Chem. Anticancer Agents 3 301; (b) Orsini F, Sello G and Sisti M 2010 Curr. Med. Chem. 17 264

  4. Atherton F R, Hassall C H and Lambert R W 1986 J. Med. Chem. 29 29

    Article  CAS  Google Scholar 

  5. Maier L 1990 Phosphorus, Sulfur Silicon Relat. Elem. 53 43

    Article  CAS  Google Scholar 

  6. Maier L and Spoerri H 1991 Phosphorus, Sulfur Silicon Relat. Elem. 61 69

    Article  CAS  Google Scholar 

  7. Meyer J H and Barlett P A 1998 J. Am. Chem. Soc. 120 4600

    Article  CAS  Google Scholar 

  8. Miller D J, Hammond S M, Anderluzzi D and Bugg T D H 1998 J. Chem. Soc., Perkin Trans. 1 131

    Article  Google Scholar 

  9. Allen M C, Fuhrer W, Tuck B, Wade R and Wood J M 1989 J. Med. Chem. 32 1652

    Article  CAS  Google Scholar 

  10. (a) Oleksyszyn J and Powers J C 1991 Biochemistry 30 485; (b) Green D, Patel G, Elgendy S, Baban J A, Claeson G, Kakkar V V and Deadman J 1993 Tetrahedron Lett. 34 6917

  11. (a) Mizrahi D M, Waner T and Segall Y 2001 Phosphorus, Sulfur Silicon Relat. Elem. 173 1; (b) Green J R 2000 Med. Klin. 95 23

  12. Hirschmann R, Smith I. A B, Taylor C M, Benkovic P A, Taylor S D, Yager K M, Sprengeler P A and Benkovic S J 1994 Science 265 234

    Article  CAS  Google Scholar 

  13. (a) Kabachnik M J and Medved T 1953 Izv. Akad. Nauk SSSR 1126; (b) Kabachnik M J and Medved T 1954 Izv. Akad. Nauk SSSR 1024; (c) Fields E K 1952 J. Am. Chem. Soc. 74 1528

  14. (a) Ranu B C, Hajra A and Jana U 1999 Org. Lett. 1 1141; (b) Zhan Z P and Li J P 2005 Synth. Commun. 35 2501; (c) Rezaei Z, Firouzabadi H, Iranpoor N, Ghaderi M A, Jafari R Jafari A A and Zare H R 2009 Eur. J. Med. Chem. 44 4266; (d) Xu F, Luo Y Q, Wu J T, Shen Q and Chen H 2006 Heteroat. Chem. 17 389; (e) Ghosh R, Maiti S, Chakraborty A and Maiti D K 2004 J. Mol. Catal. A: Chem. 210 53; (f) Sobhani S and Tashrifi Z 2009 Heteroat. Chem. 20 109; (g) Sobhani S and Tashrifi Z 2009 Synth. Commun. 39 120; (h) Azizi N and Saidi M R 2003 Eur. J. Org. Chem. 4630; (i) Shen L, Cao S, Liu N J, Wu J J, Zhu L J and Qian X H 2008 Synlett 1341; (j) Kumar A S, Taneja S C, Hundal M S and Kapoor K K 2008 Tetrahedron Lett. 49 2208; (k) Dindulkar S D, Reddy M V and Jeong Y T 2012 Catal. Commun. 17 114

  15. (a) Kaboudin B and Jafari E 2008 J. Iran. Chem. Soc. 5 S97; (b) Mitragotri S D, Pore D M, Desai U V and Wadgaonkar P P 2008 Catal. Commun. 9 1822; (c) Vahdat S M, Baharfar R, Tajbakhsh M, Heydari A, Baghbanian S M and Haksar S 2008 Tetrahedron Lett. 49 6501; (d) Heydari A, Hamadi H and Pourayoubi M 2007 Catal. Commun. 8 1224; (e) Yang J J, Dang N and Chang Y W 2009 Lett. Org. Chem. 6 470

  16. Tajbakhsh M, Heydari A, Alinezhad H, Ghanei M and Khaksar S 2008 Synthesis 3 352

    Article  Google Scholar 

  17. Kaboudin B and Zahedi H 2008 Chem. Lett. 37 540

    Article  CAS  Google Scholar 

  18. Tian Y P, Xu F, Wang Y, Tang J J and Li H L J 2009 Chem. Res. 78

  19. Kassaee M Z, Movahedi F and Masrouri H 2009 Synlett 1326

  20. Hosseini-Sarvari M 2008 Tetrahedron 64 5459

    Article  CAS  Google Scholar 

  21. Kaboudin B and Sorbiun M 2007 Tetrahedron Lett. 48 9015

    Article  CAS  Google Scholar 

  22. Wu J, Sun W, Sun X Y and Xia H G 2006 Green Chem. 8 365

  23. Mohammad A and Mohsen S 2013 J. Chem. Sci. 125 537

    Article  Google Scholar 

  24. Vinu A, Kalita P, Balasubramanian V V, Oveisi H, Selvan T, Mano A, Chari M A and Reddy B V S 2009 Tetrahedron Lett. 50 7132

    Article  CAS  Google Scholar 

  25. Santhosh Reddy M, Manjula A and Vittal Rao B 2014 J. Chem. Sci. 126 793

    Article  Google Scholar 

  26. (a) Subba Rao D, Srinivasulu D, Rajasekhar, D and Naga Raju C 2013 Chin. Chem. Lett. 24 759; (b) Subba Rao D, Madhava G, Rasheed S, Thahir Basha SK, Naga Lakshmi Devamma M and Naga Raju C 2015 Phosphorus, Sulfur Silicon Relat. Elem. 190 574; (c) Subba Rao D, Rasheed S, Thaslim Basha S K, Naga Raju C and Naresh K 2013 Der Pharma Chemica 5 61

  27. (a) Ali K, Mohammad B, Bahram B and Samaneh B 2011 Tetrahedron Lett. 52 1498; (b) Mitsuo K, Maki N, Megumi A and Tadashi A 2008 Tetrahedron Lett. 49 2537; (c) Fan G, Luo S, Wu Q, Fang T, Li J and Song G 2015 RSC Adv. 5 56478

  28. Ansari F L, Nazir S, Noureen H and Miraza B 2005 Chem. Biodivers. 2 1656

    Article  CAS  Google Scholar 

  29. (a) Bonjar Shahidi G H 2004 Asian J. Sci. 3 82; (b) National committee for clinical laboratory standards.2000 In Methods for dilution, antimicrobial susceptibility tests for bacteria that grow aerobically 5th ed. (Villanova, Pennsylvania: NCCLS) p. 30; (c) Bauer A W, Kirby M M, Sherris J C and Truck M 1966 Am. J. Clin. Pathol. 45 493

  30. (a) Rajasekhar D, Subba Rao D, Srinivasulu D, Naga Raju C and Balaji M 2013 Phosphorus, Sulfur Silicon Relat. Elem. 188 1017; (b) Srinivasulu K, Anilkumar M, Naga Raju C and Reddy C S 2007 ARKIVOC 14 100; (c) Bhupendra Reddy C, Suresh Kumar K, Anil Kumar M, Reddy M V N, Krishna B S, Naveen M, Arunasree M K, Suresh Reddy C, Naga Raju C and Reddy C D 2012 Eur. J. Med. Chem. 47 553; (d) Subba Reddy S, Rao V K, Krishna B S, Suresh Reddy C, Rao P V and Naga Raju C 2011 Phosphorus, Sulfur Silicon Relat. Elem. 186 1411; (e) Rasheed S, Venkataramana K, Chadrasekhar K, Fareeda G and Naga Raju C 2012 Arch. Pharm. 345 294

  31. (a) Kini S G, Bhat A, Pan Z and Dayan F E 2010 J. Enzyme Inhib. Med. Chem. 25 730; (b) Kini S G, Bhat A R, Bryant B, Williamson J S and Dayan F E 2009 Eur. J. Med. Chem. 2 492; (c) Yu H, Yang H, Cui D, Lv L and Li B 2011 J. Agric. Food Chem. 21 11718; (d) Yun hang G, Xiang Ji C, Hong Mei J, Winnie D C, Peter B, Jorg S, Johnny V and Bo Li L 2008 Sci. China Ser. B-Chem. 5 457; (e) Schweizer H P 2001 FEMS Microbiol. Lett. 202 1

Download references

Acknowledgements

The authors are thankful to Hyderabad Central University, Osmania University and Department of Biochemistry, S. V. University for providing instrumentation facilities to characterize the compounds and biological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NAGA RAJU CHAMARTHI.

Additional information

Supplementary Information (SI)

Numbering figure of the title compounds (Figure S1), spectroscopic data of the compounds, the relevant spectra (1H NMR, 13C NMR, 31P NMR and mass spectra) of compound 5j (Figure S2–S5), and antibacterial (Table S1) and antifungal (Table S2) activities data are given in Supplementary Information. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 664 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SIVALA, M.R., DEVINENI, S.R., GOLLA, M. et al. A heterogeneous catalyst, SiO2-ZnBr2: An efficient neat access for α-aminophosphonates and antimicrobial activity evaluation. J Chem Sci 128, 1303–1313 (2016). https://doi.org/10.1007/s12039-016-1113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1113-1

Keywords

Navigation