Skip to main content
Log in

Synthesis and evaluation of some novel precursors of oxazolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Some 3-(3-(7-chloroquinolin-4-ylamino)propyl-2-imino-5-(4-chloro/nitro/methoxy benzylidene) oxazolidin-4-one 4(a–c) and 4-(3-(7-chloroquinolin-4-ylamino) propyl)-2(4-chloro/nitro/methoxy benzylidene)-1,6-diox-4,9 diazaspiro[4,4]nonane-3,8-dione 5(a–c) derivatives were synthesized using appropriate synthetic route. The newly prepared compounds 5a–c demonstrated inhibitory effects on the growth of a MCF7 (hormone-dependant breast carcinoma cell line), HT29 (colon carcinoma cell line on leukemia). The MCF7 cell line was found to be very susceptible towards compound 5a with IC50 values of 16 μg/ml. Similarly, the HT29 cell line was found to be moderately susceptible towards compounds 5a and 5c with IC 50 values of 32 and 49 μg/ml, respectively.

A series of novel spiro oxazolidinone 5(a-c) was synthesized in multistep reactions. Newly synthesized compounds were characterized and screened for their in-vitro cytotoxic potential against MCF7 and HT29 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1

Similar content being viewed by others

References

  1. Raether W and Hanel H 2003 Parasitol. Res. 1(2) 19

    Google Scholar 

  2. Fluit A C, Schmitz F J, Verhoef J and Milatovic D 2002 J. Antimicrob. Chemother. 50(2) 271

    Article  CAS  Google Scholar 

  3. Robert L, Goldenberg M D, John C, Hauth M D and William W Andrews 2000 N. Engl. J. Med. 342(5) 1500

  4. Leach L K, Brickner S J, Noe C M and Miller P F 2011 Ann. N Y Acad. Sci. 1222(3) 49

    Article  CAS  Google Scholar 

  5. Swaney S M, Aoki H, Ganoza M C and Shinabarger D L 1998 Antimicrob. Agents Chemother. 42(12) 3251

    CAS  Google Scholar 

  6. Yonath A 2005 Annu. Rev. Biochem. 74(7) 649

    Article  CAS  Google Scholar 

  7. Lin A H, Murray R W, Vidmar T J and Marotti K R 1997 Antimicrob. Agents Chemother. 41(10) 2127

    CAS  Google Scholar 

  8. Xiong L, Kloss P, Douthwaite S, Andersen N M, Swaney S, Shinabarger D L and Mankin A S 2000 J. Bacteriol. 182(10) 5325

    Article  CAS  Google Scholar 

  9. Eustice D C, Feldman P A and Slee A M 1988 Biochem. Biophys. Res. Commun. 150(10) 965

    Article  CAS  Google Scholar 

  10. Burghardt H, Schimz K L and Muller M 1998 FEBS Lett. 425(3) 40

    Article  CAS  Google Scholar 

  11. Murray R W, Schaadt R D, Zurenko G E and Marotti K R 1998 Antimicrob. Agents Chemother. 42(4) 947

    CAS  Google Scholar 

  12. Slee A M, Wuonola M A, McRipley R J, Zajac I, Zawada M J, Bartholomew P T, Gregory W A and Forbes M 1987 Antimicrob. Agents Chemother. 31(11) 1791

    Article  CAS  Google Scholar 

  13. Ford C W, Hamel J C, Stapert D, Moerman J K, Hutchinson D K, Barbachyn M R and Zurenko G E 1997 Trends Microbiol. 5(5) 196

    Article  CAS  Google Scholar 

  14. Fugitt R B and Martinelli L C 1973 J. Pharma. Sci. 62(6) 1013

    Article  CAS  Google Scholar 

  15. Venkata Rami Reddy Macherla, Benjamin Nicholson and Kin Sing Lam 2008 United State Patent Application 20080221182 Kind Code-A

  16. Venkata Rami Reddy Macherla, Benjamin Nicholson and Kin Sing Lam 2008 United State Patent Application 20080221183 Kind Code-A

  17. Sternberg J A, Geffken D, Adams Jr J B, Pöstages R, Strenberg C G, Cambbell C L and Moberg W K 2001 Pest Manag. Sci. 57(2) 143

    Article  CAS  Google Scholar 

  18. Edafiogho I O, A-phillips O, Edet E, Samuel S and Rethish B 2009 Eur. J. Med. Chem. 44(3) 679

    Article  Google Scholar 

  19. Walter K, Gerald K, Huth A, Froehlich W and Laurent H 1999 United State Patent Application 5998453

  20. Willam J W, Grover C H, Roy T C, Turnbull L B and John P D 1973 J. Med. Chem. 16(10) 1129

    Article  Google Scholar 

  21. Cynamon M H, Klemens S P, Sharpe C A and Case S 1999 Antimicrob. Agents Chemother. 43(5) 1189

    CAS  Google Scholar 

  22. Vera-Carbrera L, Gonazalez E, Velazquez-moreno A M, Choi S H and Molina-Torres C 2006 Antimicrob. Agents Chemother. 50(3) 3170

    Article  Google Scholar 

  23. Kiran G S, Kumar R, Ali A, Madhavi N L, Anjum S G, Cao H, Nathans R S, Schiffer C A and Rana T M 2007 J. Med. Chem. 50(8) 4316

    Google Scholar 

  24. Ali A, Kiran G S, Reddy K, Cao H, Anjum S G, Madhavi L, Schiffer C A and Rana T R 2006 J. Med. Chem. 49(12) 7342

    Article  CAS  Google Scholar 

  25. Bhatt J J, Trivedi P B, Undavia N K and Desai N C 1994 Indian J Chem. 33B(2) 189

    CAS  Google Scholar 

  26. Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H and Sohda T 2002 J. Med. Chem. 45(7) 1518

  27. Muller M and Schimz L K 1999 Cell. Mol. Life Sci. 56(2) 280

    Google Scholar 

  28. Biavalli M W, Veira P C and De-silva M F 2002 J. Brazilian Chem. Soc. 13(1) 66

  29. Robert M, Jampilek J, Kralova K, Richmann D R, Kaliwoshki D and Polonski J 2007 J. Biorg. Med. Chem. 3(1) 1280

  30. Abele E, Abele A, Rubina K and Lukinesa E 2005 Chem. Hetero. Comp. 41 137

    Google Scholar 

  31. Robert M, Jampilek J, Kralova K, Richmann D R, Kaliwoshki D and Polonski J 2007 J. Med. Chem. 45 308

    Google Scholar 

  32. Abrahim M A, Abdu E A A and Bakhite E A 1991 Phosphorus, Sulfur Silicon Related Element 57(3–4) 293

    Google Scholar 

  33. Feng X U, Ding Q, Yang K and Jing W G 2006 Chinese Chem. Lett. 17(2) 187

    Google Scholar 

  34. Gramik V G, Zhidkava A M, Kiselev S S, Ghohkov R G, Polezhaeva A J and Moshkovshi M D 1978 Pharma. Chem. 12(7) 881

    Article  Google Scholar 

  35. Nazullaev S S, Bessanava I A and Akhmedkhodzhaeva K S 2001 Chem. Natural Comp. 37 551

    Article  Google Scholar 

  36. Nurestri A M, Sim K S, Norhanom A W, Hashim Y 2009 Molecules 14(5) 1713

    Article  Google Scholar 

  37. Geran R I, Greenberg N H, McDonald M M, Schumacher A M, Abbott B J 1972 Cancer Chemother. Rep. 3 17

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Science and Technology (DST), New Delhi (India) for providing financial assistance to Banasthali Centre for Education and Research in Basic Sciences under their CURIE (Consolidation of University Research for Innovation and Excellence in Women University) programme. Authors thank the Director, Central Drug Research Institute (CDRI), Lucknow, India and Dr. Anees A Siddiqui, Jamiya Hamdard University, Delhi, India (for providing the spectral data of the compounds). Authors are also thankful to the Head, Department of Bioscience and Biotechnology, Banasthali University for carrying out antimicrobial screening and to Pinnacle Biomedical Research Institute (PBRI), Bhopal for carrying out cytotoxicity assay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SWAPNIL SHARMA.

Additional information

Supplementary information

The electronic supporting information can be seen in www.ias.ac.in/chemsci.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 1.00 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DEVI, K., ASMAT, K., AGRAWAL, M. et al. Synthesis and evaluation of some novel precursors of oxazolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential. J Chem Sci 125, 1093–1101 (2013). https://doi.org/10.1007/s12039-013-0492-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0492-9

Keywords

Navigation