Skip to main content
Log in

Electrochemical studies of ropinirole, an anti-Parkinson’s disease drug

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of ropinirole has been examined for the first time. The voltammetric response attributed to the oxidation of indol-2-one ring was used for electroanalytical measurements of drug molecule.

The oxidation behaviour of a potent anti-Parkinson’s disease drug ropinirole hydrochloride was investigated over a wide pH range in aqueous solution at glassy carbon electrode using cyclic and square-wave voltammetry. The oxidation of drug is a pH dependent irreversible process and occurs in two steps. The mechanism of the oxidation process has been discussed. Using the sharp oxidation response in 0.1 M sulphuric acid at a potential of +1.27 V attributed to the oxidation of indol-2-one ring in drug molecule, rapid electroanalytical methods for the determination of ropinirole by pulse voltammetric techniques were developed and validated. The proposed voltammetric methods were applied to direct quantification of ropinirole in film-coated tablets, with results in close agreement (at 95% confidence level) with those obtained using a comparative HPLC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

References

  1. Matheson A J and Spencer C M 2000 Drugs 60 115a

    Article  CAS  Google Scholar 

  2. Hubble J, Koller W C, Atchison P, Taylor A C, Citerone D R, Zussman B D, Friedman C J and Hawker N 2000 J. Clin. Pharmacol. 40 641

    Article  CAS  Google Scholar 

  3. Bogan R K 2008 Expert. Opin. Pharmacother. 9 611

    Article  CAS  Google Scholar 

  4. Nigović B 2009 In The analysis of pharmacologically active compounds and biomolecules in real samples, Ed. R Injac, Kerala: Transworld Research Network, pp 1–44

  5. Uslu B and Ozkan S A 2007 Anal. Lett. 40 817

    Article  CAS  Google Scholar 

  6. Gupta V K, Jain R, Radhapyari K, Jadon N and Agarwal S 2011 Anal. Biochem. 408 179

    Article  CAS  Google Scholar 

  7. Nigović B and Hocevar S B 2011 Electrochim. Acta 58 523

    Article  Google Scholar 

  8. Nigović B, Marušić M and Jurić S 2011 J. Electroanal. Chem. 663 72

    Article  Google Scholar 

  9. Nigović B and Spajić J 2011 Talanta 86 393

    Article  Google Scholar 

  10. Bhatt J, Jangid A, Shetty R, Shah B, Kambli S, Subbaiah G and Singh S 2006 J. Pharm. Biomed. Anal. 40 1202

    Article  CAS  Google Scholar 

  11. Bharathi D V, Jagadeesh B, Kumar S S, Lakshmi R N, Hotha K K, Naidu A and Mullangi R 2009 Biomed. Chrom. 23 557

    Article  CAS  Google Scholar 

  12. Sahasrabuddhey B, Naudyal R, Acharya H, Khyade S, Luthra P K and Deshpande P B 2007 J. Pharm. Biomed. Anal. 43 1587

    Article  CAS  Google Scholar 

  13. Azeem A, Iqbal Z, Ahmad F J, Khar R K and Talegaonkar S 2008 Acta Chromatogr. 20 95

    Article  CAS  Google Scholar 

  14. Parmar G, Sharma S, Singh K and Bansal G 2009 Chromatographia 69 199

    Article  CAS  Google Scholar 

  15. Coufal P, Stulik K, Claessens H A, Hardy M J and Webb M 1999 J. Chromatogr. B 732 437

    Article  CAS  Google Scholar 

  16. Coufal P, Stulik K, Claessens H A, Hardy M J and Webb M 1998 J. Chromatogr. B 720 197

    Article  CAS  Google Scholar 

  17. Onal A and Caglar S 2007 Chem. Pharm. Bull. 55 629

    Article  CAS  Google Scholar 

  18. Aydogmus Z 2008 Spectrochim. Acta Mol. Spectrosc. 70 69

    Article  Google Scholar 

  19. Krishnaiah C, Murthy M V, Reddy A R, Kumar R and Mukkanti K 2010 J. Chin. Chem. Soc. 57 348

    CAS  Google Scholar 

  20. European Pharmacopoeia, 7th ed. 2012 (Strasbourg, Council of Europe)

  21. Onal A 2006 Chromatographia 64 459

    Article  CAS  Google Scholar 

  22. Luzardo-Alvarez A, Delgado-Charro M B and Blanco-Mendez J 2001 Pharm. Res. 18 1714

    Article  CAS  Google Scholar 

  23. Kul D, Gumustas M, Uslu B and Ozkan S A 2010 Talanta 82 286

    Article  CAS  Google Scholar 

  24. Diculescu V C, Kumbhat S and Oliveira-Brett A M 2006 Anal. Chim. Acta 575 190

    Article  CAS  Google Scholar 

  25. Xu X L, Huang F, Zhou G L, Zhang S and Kong J L 2010 Sensors 10 8398

    Article  CAS  Google Scholar 

  26. Ermer J and Miller J H McB (Eds) 2005 Method validation in pharmaceutical analysis, Weinheim: Wiley-VCH Pub.

  27. International Conference on Harmonization (ICH) 2005 Validation of analytical procedures: Text and methodology Q2 (R1)

Download references

Acknowledgements

This work was supported through a grant (Investigation of new methods in analysis of drugs and bioactive substances) from the Ministry of Science, Education and Sports of the Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BILJANA NIGOVIĆ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NIGOVIĆ, B., JURIĆ, S., MORNAR, A. et al. Electrochemical studies of ropinirole, an anti-Parkinson’s disease drug. J Chem Sci 125, 1197–1205 (2013). https://doi.org/10.1007/s12039-013-0444-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0444-4

Keywords

Navigation