Skip to main content
Log in

Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The inductive effect of methyl group has been quantified by expressing highest occupied molecular orbital (HOMO) and HOMO–1 energies of indole and a series of methylated indoles using a combination of graph theory (GT) and the Coulson–Longuett–Higgins perturbation method. By correlating these expressions with the corresponding Kohn–Sham orbital energies of the indoles obtained by density functional theory (DFT) calculation at the B3LYP/6–31+ +G(d,p) and M06–2X/6–31+ +G(d,p) levels of theory, the inductive effect parameter h Me has been estimated; the Coulomb integral α of π-conjugated carbon atom also comes out from the analysis. A correlation of the GT results with the HOMO and HOMO–1 energies obtained by the HF/STO–3G method yield almost the same values of h Me and α. Finally, when these estimated h Me and α are used to calculate the vertical ionization potentials of the methylated indoles in the series, an excellent correlation with experimental charge transfer transition energies of their molecular complexes with tetracyanoethylene is obtained which complies with Mulliken’s theory of charge transfer.

Inductive effect of methyl group has been quantified and the Coulomb integral α of π-conjugated C-atom has been estimated by comparing the graph theoretically calculated orbital energies of methylindoles with those obtained by HF/STO–3G, DFT/B3LYP/ 6–31++G(d,p) and DFT/M06–2X/6-31++G(d,p) methods. Results correlate well with experimental CT transition energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Article  Google Scholar 

  2. Kohn W and Sham L J 1965 Phys. Rev. A 140 1133

    Google Scholar 

  3. Jena N K, Srinivasu K and Ghosh S K 2012 J. Chem. Sci. 124 255

    Article  CAS  Google Scholar 

  4. Srinivasu K and Ghosh S K 2011 J. Phys. Chem. C 115 1450

    Article  CAS  Google Scholar 

  5. Ghosh C and Sarkar P 2007 J. Phys. Chem. Solids 68 1324

    Article  CAS  Google Scholar 

  6. Mistri T, Dolai M, Chakroborty D, Khuda Bakshsh A R, Das K K and Ali M 2012 Org. Biomol. Chem. 10 2380

    Article  CAS  Google Scholar 

  7. Webber B T, Per M C, Drumm D W, Hollenberg L C L and Russo S P 2012 Phys. Rev. B 85 14102

    Article  Google Scholar 

  8. Tiwary A S and Mukherjee A K 2008 J. Mol. Struct-THEOCHEM 859 107

    Article  CAS  Google Scholar 

  9. Gupta A, Singh R P, Singh V B, Mishra B K and Sathyamurthy N 2007 J. Chem. Sci. 119 457

    Article  CAS  Google Scholar 

  10. Hückel E 1931 Z. Physik. 70 204

    Article  Google Scholar 

  11. Jursic B S 2000 J. Mol. Struct-THEOCHEM 498 159

    Article  CAS  Google Scholar 

  12. Hagebaum-Reignier D, Girardi R, Carissan Y and Humbel S 2007 J. Mol. Struct-THEOCHEM 817 99

    Article  CAS  Google Scholar 

  13. Dias J R and Guirgis G A 2002 Croat. Chim. Acta 75 621

    CAS  Google Scholar 

  14. Hall G G 1977 Mol. Phys. 33 551

    Article  CAS  Google Scholar 

  15. McClelland B J 1974 J. Chem. Soc. Farad. Tr. 70 1453

    Article  CAS  Google Scholar 

  16. Sarkar J K and Mukherjee A K 1997 Mol. Phys. 90 903

    Article  CAS  Google Scholar 

  17. Dias J R 2004 Croat. Chim. Acta 77 325

    CAS  Google Scholar 

  18. Dias J R 1987 Handbook of polycyclic hydrocarbons, Part A (1988 part B) (New York: Elsevier)

    Google Scholar 

  19. Dias J R and Aihara J 2009 Mol. Phys. 107 71

    Article  CAS  Google Scholar 

  20. Dias J R 2011 Open Org. Chem. J. 5 112

    Article  CAS  Google Scholar 

  21. Aihara J 2008 J. Phys. Chem. A 112 4383

    Google Scholar 

  22. Coulson C A and Longuet-Higgins H C 1947 Proc. R. Soc. (London) A 191 39

    Article  CAS  Google Scholar 

  23. Mulliken R S 1952 J. Am. Chem. Soc. 74 811

    Article  CAS  Google Scholar 

  24. Mulliken R S 1955 J. Chem. Phys. 23 397

    CAS  Google Scholar 

  25. Dias J R 1987 Can. J. Chem. 65 734

    Article  CAS  Google Scholar 

  26. Datta K and Mukherjee A K 1997 Int. J. Quant. Chem. 65 199

    Article  CAS  Google Scholar 

  27. Tiwary A S and Mukherjee A K 2008 Mol. Phys. 106 2271

    Article  CAS  Google Scholar 

  28. Sreitwieser Jr. A 1961 Molecular orbital theory for organic chemists (New York: John Wiley), pp. 105

    Google Scholar 

  29. Demidovich B P and Marron I A 1976 Computational mathematics (Moscow: Mir), p. 176. See also Kurosh A G 1969 Higher Algebra (Moscow: Nauka)

  30. Datta K K and Mukherjee A K 1989 Proc. Indian Acad. Sci. (Chem. Sci.) 101 499

    Google Scholar 

  31. Ulam S 1960 A collection of mathematical problems, (New York: Wiley) p. 29

    Google Scholar 

  32. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  33. Lee C, Yang W and Parr R G 1988 Phys Rev. B 37 785

    Article  CAS  Google Scholar 

  34. Frisch M J et al 2004 Gaussian 03, Revision D.01 (Wallingford CT: Gaussian, Inc.)

    Google Scholar 

  35. Zhao Y and Truhler D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  36. Nijamudheen A, Jose D, Shine A and Datta A 2012 J. Phys. Chem. Lett. 3 1493

    Article  CAS  Google Scholar 

  37. Jissy A K, Ashik U P M and Datta A 2011 J. Phys. Chem. C 115 12530

    Article  CAS  Google Scholar 

  38. Jose D and Datta A 2011 Cryst. Growth Des. 11 3137

    Article  CAS  Google Scholar 

  39. Jissy A K and Datta A 2010 J. Phys. Chem B 114 15311

    Article  CAS  Google Scholar 

  40. Frisch M J et al. 2009 Gaussian 09, Revision A.02: (Wallingford CT: Gaussian, Inc.)

    Google Scholar 

  41. Platt J R 1947 J. Chem. Phys. 15 419

    Article  CAS  Google Scholar 

  42. Koopmans T A 1933 Physica 1 104

    Article  CAS  Google Scholar 

  43. Foster R and Hanson P 1965 Tetrahedron 21 255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the learned reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AMIT S TIWARY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

TIWARY, A.S., MUKHERJEE, A.K. Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies. J Chem Sci 125, 905–912 (2013). https://doi.org/10.1007/s12039-013-0436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0436-4

Keywords

Navigation