Skip to main content
Log in

Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10−8–6.0×10−5 mol/L, with a detection limit of 2.0 × 10−8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Igarashi and S Iwakawa 2009 Biol. Pharm. Bull. 32 307

    Article  Google Scholar 

  2. Kanehara M, Yokoyama A, Tomoda Y, Shiota N, Iwamoto H, Ishikawa N and Taooka Y 2008 Pulm. Pharmacol. Ther. 21 874

    Article  CAS  Google Scholar 

  3. Kawai Mand Kato M 2000 Find. Exp. Clin. Pharmacol. 2 309

    Article  Google Scholar 

  4. Blake K and Kamada A K 1996 Textbook of therapeutics: drug and disease management (Williams and Wilkins: Baltimore) 6 651

    Google Scholar 

  5. Weinberger M, Hendeles L and Engl N 1996 J. Med. 334 1380

    CAS  Google Scholar 

  6. Minton N A and Henry J A 1996 Human Exp. Toxicol. 15 471

    Article  CAS  Google Scholar 

  7. Srdjenovic B, Djordjevic-Milic V and Grujic 2008 J. Chromatographic. Science 46 144

    CAS  Google Scholar 

  8. Huang X L and Xu M Y 2005 Se Pu. 23 296

    CAS  Google Scholar 

  9. Culzoni M J, De Zan M A, Robles J C, Mantovani V E and Goicoechea H C 2005 J. Pharmaceut. Biomed. 39 1068

    Article  CAS  Google Scholar 

  10. Zhou M X, Guan C Y, Chen G, Xie X Y and Wu S H 2005 J. Zhejiang. Univ. Sci. B6 1148

    Google Scholar 

  11. Arinobu T, Hattori H,. Kumazawa T, Lee X P, Mizutani Y, Katase T, Kojima S, Omori T, Kaneko R, Ishii A and Seno H 2009 Forensic. Toxicol. 27 1

    Article  CAS  Google Scholar 

  12. Kress M, Meissner D, Kaiser P, Hanke R and Wood W G 2002 Clin. Lab. 48 541

    CAS  Google Scholar 

  13. Sadik O A, Land W H and Wang J 2003 Electroanalysis. 15 1149

    Article  CAS  Google Scholar 

  14. Liu L Q, Xiao F, Li J W, Wu W B, Zhao F Q and Zeng B Z 2008 Electroanalysis 20 1194

    Article  CAS  Google Scholar 

  15. Miroslav S, Andrea P, Stanislav M and Jozef S 2000 Anal. Biochem. 285 225

    Article  Google Scholar 

  16. Yuan H Z, Zhang Z L and Pang D W 2005 J. Electroanal. Chem. 581 303

    Article  Google Scholar 

  17. Zen J M, Yu T Y and Shih Y 1999 Talanta 50 635

    Article  CAS  Google Scholar 

  18. Elena E F, Stepan S and Lo G 2007 Biosens. Bioelectron. 22 2508

    Article  Google Scholar 

  19. Yang G J, Wang K, Xu J J and Chen H Y 2004 Anal. Lett. 37 629

    Article  CAS  Google Scholar 

  20. Spataru N, Sarada B V, Tryk D A and Fujishima A 2002 Electroanalysis 14 721

    Article  CAS  Google Scholar 

  21. Rochefort A, Avouris P, Lesage F and Salahub D R 1999 Phys. Rev. B60 13824

    Google Scholar 

  22. Ajayan P M 1999 Chem. Rev. 99 1787

    Article  CAS  Google Scholar 

  23. Wu K B, Fei J J and Hu S S 2003 Anal. Biochem. 318 100

    Article  CAS  Google Scholar 

  24. Hu C G and Feng B 2005 Int. J. Mod. Phys. B19 603

    Google Scholar 

  25. Erdogdu G 2003 J. Anal. Chem. 58 569

    Article  CAS  Google Scholar 

  26. Cheng H L and Sun I W 2001 Electroanalysis 13 1544

    Article  CAS  Google Scholar 

  27. Wang Z, Zhang H, Zhou S and Dong W 2001 Talanta 53 1133

    Article  CAS  Google Scholar 

  28. Xu Q and Wang S F 2005 Microchim. Acta 151 47

    Article  CAS  Google Scholar 

  29. Behzad R and Zohreh M Z S 2008 Sensor. Actuat, B — Chem. 134 292

    Article  Google Scholar 

  30. Britto P J, Santhanam K S V, Rubio A, Alonso J A and Ajayan P M 1999 Adv. Mater. 11 154

    Article  CAS  Google Scholar 

  31. Musameh M, Lawrence N S and Wang J 2005 Electrochem. Commun. 7 14

    Article  CAS  Google Scholar 

  32. Banks C E and Compton R G 2006 Analyst. 131 15

    Article  CAS  Google Scholar 

  33. Riahi S, Mousavi M F, Bathaie S Z and Shamsipur M 2005 Anal. Chim. Acta 548 192

    Article  CAS  Google Scholar 

  34. Laviron E 1979 J. Electroanal. Chem. 101 19

    Article  CAS  Google Scholar 

  35. Bard A J and Faulkner L R 1980 Electrochemical methods fundamentals and applications (New York: Wiley) 522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Yang, R., Li, G. et al. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode. J Chem Sci 122, 919–926 (2010). https://doi.org/10.1007/s12039-010-0080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0080-1

Keywords

Navigation