Skip to main content

Advertisement

Log in

Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Scanning Electrochemical Microscopy (SECM) is a unique technique for studying fast heterogeneous kinetics and to map reactivity gradients along the surface of an electrocatalyst, especially when it involves multiple surface sites of varying reactivity. It combines the dual advantages offered by ultramicroelectrode (UME) voltammetry in terms of reduced ohmic drop and insignificant double layer charging contribution with the advantages of imaging by rastering the UME across an electro-active surface. In this work, we demonstrate these distinctive features of SECM in evaluating reactivity gradients on catalyst (Pt/C) coated Nafion® films towards hydrogen oxidation activity, a reaction of immense technological relevance. Imaging has been performed in the feedback mode by allowing H2 evolution at the tip (25 µm Pt UME), which is reoxidized at the substrate electrode containing Pt/C-Nafion film. Interesting distribution in H2 oxidation activity has been observed as a function of potential applied to the Pt/C-Nafion film. In addition, a plot of normalized tip current versus the substrate electrode potential indicates the effect of potential-induced reactivity change in the catalyst-coated membranes. The results of the present investigation are believed to be useful to H2/O2 PEM fuel cells with respect to evaluating reactivity gradients of catalyst-coated polymer electrolyte membranes, which is important to rectify problems related to catalyst utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtin, D E, Lousenberg R D, Henry T J, Tangeman P C and Tisack M E 2004 J. Power Sources 131 41

    Article  CAS  Google Scholar 

  2. Kim J-H, Kim H-J, Lim T-H and Lee H-I 2007 J. Ind. Eng. Chem. 13 850

    CAS  Google Scholar 

  3. Jense B-W, Jensen O-W, Forsyth M and MacFarlane D R 2008 Science 321 5889

    Google Scholar 

  4. Paulus U A, Veziridis Z, Schnyder B, Kuhnke M, Scherer G G and Wokaun A 2003 J. Electroanal. Chem. 541 77

    Article  CAS  Google Scholar 

  5. Lee K, Zhang J, Wang H and Wilkinson D P 2006 J. Appl. Electrochem. 36 507

    Article  CAS  Google Scholar 

  6. Xie J, More K L, Zawodzinski T A and Smitha W H 2004 J. Electrochem. Soc. 151 A1841

    Article  CAS  Google Scholar 

  7. Subhramannia M and Pillai V K 2008 J. Mater. Chem. DOI 10.1039/b811149a

  8. Kant R and Rangarajan S K 1995 J. Electroanal. Chem. 396 285

    Article  Google Scholar 

  9. Kant R and Rangarajan S K 2003 J. Electroanal. Chem. 552 141

    Article  CAS  Google Scholar 

  10. 1974 J. Electroanal. Chem. Interfacial Electrochem. 49 217

  11. Bard A J, Fan F-R F, Kwak J and Lev O 1989 Anal. Chem. 61 132

    Article  CAS  Google Scholar 

  12. Jayaraman S and Hillier A C 2001 Langmuir 17 7857

    Article  CAS  Google Scholar 

  13. Kozlowska A and Conway B E 1979 J. Electroanal. Chem. 95 1

    Article  Google Scholar 

  14. Breiter M W 1963 Electrochim. Acta 8 973

    Article  CAS  Google Scholar 

  15. Capon A and Parsons R 1972 J. Electroanal. Chem. 39 275

    Article  CAS  Google Scholar 

  16. Conway B E and Tilak B V 2002 Electrochim. Acta 47 3571

    Article  CAS  Google Scholar 

  17. Bagotsky V S and Osetrova N V 1973 J. Electroanal. Chem. 43 233

    Google Scholar 

  18. Schuldiner S J 1968 J. Electrochem. Soc. 115 362

    Article  CAS  Google Scholar 

  19. Forster R J 1994 Chem. Soc. Rev. 289

  20. Kant R and Rangarajan S K 1989 J. Electroanal. Chem. 265 39

    Article  CAS  Google Scholar 

  21. Jambunathan K, Shah B C, Hudson J L and Hillier A C 2001 J. Electroanal. Chem. 500 279

    Article  CAS  Google Scholar 

  22. Zoski C G 2003 J. Phys. Chem. B107 6401

    Google Scholar 

  23. Zhou J, Zu Y and Bard A J 2000 J. Electroanal. Chem. 491 22

    Article  CAS  Google Scholar 

  24. Kannan R, Kakade B A and Pillai V K 2008 Angew. Chem, Int. Ed. 47 2653

    Article  CAS  Google Scholar 

  25. Parthasarathy M, Singh S, Hazra S and Pillai V K 2008 Anal. Bioanal. Chem. 391 2227

    Article  CAS  Google Scholar 

  26. Jeon C and Anson F C 1992 Anal. Chem. 64 2021

    Article  CAS  Google Scholar 

  27. Kallio T, Slevin C, Sundholm G, Holmlund P and Koontturi K 2003 Electrochem. Commun. 5 561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayamohanan K. Pillai.

Additional information

Dedicated to the memory of the late Professor S K Rangarajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, M., Pillai, V.K. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy. J Chem Sci 121, 719–725 (2009). https://doi.org/10.1007/s12039-009-0086-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0086-8

Keywords

Navigation