Skip to main content
Log in

Synthesis and structural characterization of a novel peroxo bridged dinuclear cobalt(III) complex of succinimide showing three varieties of hydrogen bonding interactions

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The reaction of aqueous cobaltous nitrate hexahydrate with the anion of succinimide (sucH) in the presence of excess ethylenediamine (en) in air results in the formation of a dinuclear complex µ-peroxo-bis[bis(ethylenediamine)succinimidato-cobalt(III)] dinitrate dihydrate, 1, in good yield. Compound 1 was characterized by elemental analysis, IR, visible spectra and magnetic susceptibility studies. The explosive nature of [Co(en)2(suc)(µ-O2)Co(en)2(suc)](NO3)2·2H2O, 1, precluded its thermal characterization. Compound 1 crystallises in the monoclinic space group P21/c and a half of the molecule, constitutes its asymmetric unit. In the centrosymmetric dinuclear complex 1, two Co(III) centres are linked by a planar peroxide bridge. Each cobalt atom is surrounded by four nitrogen atoms of ethylenediamine ligands, a nitrogen atom of succinimidato anion and an oxygen atom of peroxo bridge resulting in a slightly distorted {CoN5O} octahedron. Due to steric hindrance between the two Co(III) centres, the peroxide bridge is planar with a Co-O-O-Co torsion angle of 180°. The dinuclear complex cation, the nitrate anion and the lattice water are involved in three varieties of H-bonding interactions namely N-H⋯O, O-H⋯O and C-H⋯O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortego J D and Seymour M 1982 Polyhedron 1 21

    Article  CAS  Google Scholar 

  2. Macarthur R, Sucheta A, Chong F F S and Einarsdottir O 1995 Proc. Natl. Acad. Sci. USA 92 8105

    Article  CAS  Google Scholar 

  3. Martell E, Motekaitis R J, Rockcliffe D, Menif R and Ngwenya P M 1994 Pure and Appl. Chem. 66 859

    Article  CAS  Google Scholar 

  4. Abakumov G A, Poddel’sky A I, Grunova E V, Cherkasov V K, Fukin G K, Kurskii Y A and Abakumova L G 2005 Angew. Chem. Int. Ed. 44 2767

    Article  CAS  Google Scholar 

  5. Aires V V E, Zaccaron C M, Neves A and Szpoganicz B 2003 Inorg. Chim. Acta 353 82

    Article  CAS  Google Scholar 

  6. Argay G, Fábián L and Kálmán A 1999 Croatica Chemica Acta 72 551

    CAS  Google Scholar 

  7. Yamada S and Miki S 1963 Bull. Chem. Soc. Jpn. 36 680

    Article  CAS  Google Scholar 

  8. Slabbert N P and Thornton D A 1971 J. Inorg. Nucl. Chem. 33 2933

    Article  CAS  Google Scholar 

  9. Akitsu T, Komorita S and Tamura H 2003 Inorg. Chim. Acta 348 25

    Article  CAS  Google Scholar 

  10. Akitsu T and Komorita S 2002 Bull. Chem. Soc. Jpn. 75 767

    Article  CAS  Google Scholar 

  11. Akitsu T, Komorita S and Kushi Y 2001 Inorg. Chim. Acta 315 18

    Article  CAS  Google Scholar 

  12. Akitsu T, Komorita S and Kushi Y 1999 Bull. Chem. Soc. Jpn. 72 447

    Article  CAS  Google Scholar 

  13. Salmain M, Jaouen G, Rudolf B and Zakrzewski J 1999 J. Organometallic. Chem. 589 98

    Article  CAS  Google Scholar 

  14. Serrano J L, Zheng Y, Dilworth J R and Sánchez G 1999 Inorg. Chem. Commun. 2 407

    Article  CAS  Google Scholar 

  15. Serrano J L, García L, Perez J, Perez E, Vives J, Sanchez G, Lopez G, Molins E and Orpen A G 2002 Polyhedron 21 1589

    Article  CAS  Google Scholar 

  16. Akitsu T and Einaga Y 2005 Acta Cryst. C61 m183

    Google Scholar 

  17. Taş M, Saraçoğlu H, Batı H, Çalışkan N and Büyükgüngör O 2006 Z. Naturforsch. 61b 979

    Google Scholar 

  18. Jhon M S, Cho U, Kier L B and Eyring H 1972 Proc. Nat. Acad. Sci. USA 69 121

    Article  CAS  Google Scholar 

  19. Stoe&Cie, X-Area (Version 1.18) and X-Red32 (Version 1.04), Stoe&Cie, Darmstadt, Germany, 2002

    Google Scholar 

  20. Burla M C, Caliandro R, Camalli M, Carrozzini B, Cascarano G L, De Caro L, Giacovazzo C, Polidori G and Spagna R SIR2004: A program for automatic solution and refinement of crystal structures 2005 J. Appl. Crystallogr. 38 381

  21. Sheldrick G M 1997 SHELXL-97: Program for the refinement of crystal structures (Germany: University of Göttingen)

    Google Scholar 

  22. Johnson C K and Burnett M N 1997 ORTEP-III (version 1.0.2), Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN (USA) (1996). Windows version: Farrugia L J, University of Glasgow, Glasgow, Scotland (UK)

    Google Scholar 

  23. Farrugia L J 1999 J. Appl. Crystallogr. 32 837

    Article  Google Scholar 

  24. Nakamoto K, Suzuki M, Ishiguro T, Kozuka M, Nishida Y and Kida S 1980 Inorg. Chem. 19 2822

    Article  CAS  Google Scholar 

  25. Barraclough G, Lawrance G A and Lay P A 1978 Inorg. Chem. 17 3317

    Article  CAS  Google Scholar 

  26. Shibahara T, Koda S and Mori M 1973 Bull. Chem. Soc. Jpn. 46 2070

    Article  CAS  Google Scholar 

  27. McMullen S E and Hagen K S 2002 Acta Cryst. E58 m141

    Google Scholar 

  28. Fritch J R, Christoph G G and Schaefer W P 1973 Inorg. Chem. 12 2170

    Article  CAS  Google Scholar 

  29. Etter M C 1990 Acc. Chem. Res. 23 120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Taş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taş, M., Büyükgüngör, O. Synthesis and structural characterization of a novel peroxo bridged dinuclear cobalt(III) complex of succinimide showing three varieties of hydrogen bonding interactions. J Chem Sci 121, 267–273 (2009). https://doi.org/10.1007/s12039-009-0029-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0029-4

Keywords

Navigation