Skip to main content
Log in

Synthesis, Characterization and the Effect of the Auxiliary Ligands on the Dimensionality of Two Cobalt(II)-Fumarate Coordination Polymers with Bis(Imidazole) Ligands

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new Co(II) coordination polymers, namely {[Co(μ-fum)0.5(μ-obix)2(H2O)](NO3)}n (1), {[Co(μ-fum)0.5 (μ-mbix)2(H2O)](NO3)}n (2), (H2fum: fumaric acid, obix:1,2-bis(imidazol-1-yl-methyl)benzene, mbix: 1,3-bis(imidazol-1-yl-methyl)benzene), have been successfully synthesized under hydrothermal conditions. They have been structurally characterized by elemental analysis, IR spectra, single crystal X-ray diffraction, powder X-ray diffraction (PXRD), magnetic properties. Single-crystal X-ray analysis reveals that the asymmetric units of both CPs contain a Co(II) ion, half fumarate ligand, two bis(imidazole) ligands, one aqua ligand and a nitrate ion. While two symmetry-related Co1 ions are connected by one fumarate ligand to generate a dinuclear unit and obix ligand links adjacent dinuclear units through the nitrogen atoms to form a 1D double chains in 1, each mbix ligand links two Co1 ions to form 1D double chains, and the adjacent chains are further linked together by fumarate ligands to form a 2D network in 2. The effect of bis(imidazole) ligands, which are o- and m-isomers, on the dimensionality of the formed coordination polymer was investigated. The reason for this great effect of bis(imidazole) ligands is that adjustments in the framework occur result of the bending of the semi-rigid imidazole ligands. Thermal analysis shows that 1 and 2 possess similar thermal behaviors. The optical band gap energy values of 1 and 2 observed 3.24 eV and 3.21 eV, respectively. This small difference in the band gap energy may be due to the difference in structural arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. S. Zhang, Q. Yang, X. Liu, X. Qu, Q. Wei, G. Xie, S. Chen, and S. Gao. High-energy metal–organic frameworks (HE–MOFs): Synthesis, structure and energetic performance. Coord. Chem. Rev., 2016, 307, 292-312. https://doi.org/10.1016/j.ccr.2015.08.006

    Article  CAS  Google Scholar 

  2. S. Qiu and G. Zhu. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coord. Chem. Rev., 2009, 253(23/24), 2891-2911. https://doi.org/10.1016/j.ccr.2009.07.020

    Article  CAS  Google Scholar 

  3. N. Li, R. Feng, J. Zhu, Z. Chang, and X.-H. Bu. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev., 2018, 375, 558-586. https://doi.org/10.1016/j.ccr.2018.05.016

    Article  CAS  Google Scholar 

  4. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, and S. K. Ghosh. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 2017, 46(11), 3242-3285. https://doi.org/10.1039/c6cs00930a

    Article  CAS  PubMed  Google Scholar 

  5. S.-N. Zhao, Y. Zhang, S.-Y. Song, and H.-J. Zhang. Design strategies and applications of charged metal organic frameworks. Coord. Chem. Rev., 2019, 398, 113007. https://doi.org/10.1016/j.ccr.2019.07.004

    Article  CAS  Google Scholar 

  6. M. Du, R. Banerjee, and G. K. H. Shimizu. Structural design of coordination polymers. CrystEngComm, 2013, 15(45), 9237. https://doi.org/10.1039/c3ce90156d

    Article  CAS  Google Scholar 

  7. Q.-T. He, X.-P. Li, L.-F. Chen, L. Zhang, W. Wang, and C.-Y. Su. Nanosized coordination cages incorporating multiple Cu(I) reactive sites: host–guest modulated catalytic activity. ACS Catal., 2013, 3(1), 1-9. https://doi.org/10.1021/cs300640r

    Article  CAS  Google Scholar 

  8. A. Kuznetsova, V. Matveevskaya, D. Pavlov, A. Yakunenkov, and A. Potapov. Coordination polymers based on highly emissive ligands: synthesis and functional properties. Materials, 2020, 13(12), 2699. https://doi.org/10.3390/ma13122699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y.-X. Sun and W.-Y. Sun. Zinc(II)– and cadmium(II)–organic frameworks with 1-imidazole-containing and 1-imidazole-carboxylate ligands. CrystEngComm, 2015, 17(22), 4045-4063. https://doi.org/10.1039/c5ce00372e

    Article  CAS  Google Scholar 

  10. M. O′Keeffe and O. M. Yaghi. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev., 2012, 112(2), 675-702. https://doi.org/10.1021/cr200205j

    Article  CAS  PubMed  Google Scholar 

  11. J. Xu, X.-Q. Yao, L.-F. Huang, Y.-Z. Li, and H.-G. Zheng. Syntheses, structures, photoluminescence and magnetic properties of four new metal–organic frameworks based on imidazoleligands and aromatic polycarboxylate acids. CrystEngComm, 2011, 13(3), 857-865. https://doi.org/10.1039/c0ce00219d

    Article  CAS  Google Scholar 

  12. G.-P. Yang, L. Hou, L.-F. Ma, and Y.-Y. Wang. Investigation on the prime factors influencing the formation of entangled metal–organic frameworks. CrystEngComm, 2013, 15(14), 2561. https://doi.org/10.1039/c3ce26435a

    Article  CAS  Google Scholar 

  13. D. Zhao, D. J. Timmons, D. Yuan, and H.-C. Zhou. Tuning the topology and functionality of metal–organic frameworks by ligand design. Acc. Chem. Res., 2011, 44(2), 123-133. https://doi.org/10.1021/ar100112y

    Article  CAS  PubMed  Google Scholar 

  14. S.-L. Li, Y.-Q. Lan, J.-F. Ma, J. Yang, G.-H. Wei, L.-P. Zhang, and Z.-M. Su. Structures and luminescent properties of seven coordination polymers of zinc(II) and cadmium(II) with 3,3′,4,4′-benzophenone tetracarboxylate anion and bis(imidazole). Cryst. Growth Des., 2008, 8(2), 675-684. https://doi.org/10.1021/cg7009385

    Article  CAS  Google Scholar 

  15. J.-H. Qin, L.-F. Ma, Y. Hu,and L.-Y. Wang. Syntheses, structures and photoluminescence of five zinc(II) coordination polymers based on 5-methoxyisophthalate and flexible N-donor ancillary ligands. CrystEngComm, 2012, 14(8), 2891. https://doi.org/10.1039/c2ce06581a

    Article  CAS  Google Scholar 

  16. X.-L. Sun, Z.-J. Wang, S.-Q. Zang, W.-C. Song, and C.-X. Du. A series of Cd(II) and Zn(II) coordination polymers with helical subunits assembled from a versatile 3-(4-hydroxypyridinium-1-yl) phthalic acid and N-donor ancillary coligands. Cryst. Growth Des., 2012, 12(9), 4431-4440. https://doi.org/10.1021/cg300612k

    Article  CAS  Google Scholar 

  17. A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, and R. A. Fischer. Flexible metal–organic frameworks. Chem. Soc. Rev., 2014, 43(16), 6062-6096. https://doi.org/10.1039/c4cs00101j

    Article  CAS  PubMed  Google Scholar 

  18. P. Du, Y. Yang, J. Yang, Y.-Y. Liu, W.-Q. Kan, and J.-F. Ma. A series of MOFs based on a tricarboxylic acid and various N-donor ligands: syntheses, structures, and properties. CrystEngComm, 2013, 15(35), 6986. https://doi.org/10.1039/c3ce40828k

    Article  CAS  Google Scholar 

  19. I. Loubalová and P. Kopel. Coordination compounds of Cu, Zn, and Ni with dicarboxylic acids and N donor ligands, and their biological activity: a review. Molecules, 2023, 28(3), 1445. https://doi.org/10.3390/molecules28031445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. K. Yaman, H. Erer, M. Arıcı, İ. Eruçar, and O. Z. Yeşilel. Hydrothermal synthesis and characterization of two dimensional coordination polymers with 2,2′-dimethylglutarate and 1,2-bis(imidazol-1-ylmethyl)benzene. Inorg. Chim. Acta, 2019, 488, 229-237. https://doi.org/10.1016/j.ica.2018.12.039

    Article  CAS  Google Scholar 

  21. Y. Zhang, K. Chen, and H.-T. Fan. Synthesis, crystal structure and luminescent property of a new Zn(II) coordination polymer with twofold interpenetrated pcu topology. J. Inorg. Organomet. Polym. Mater., 2014, 24(4), 791-795. https://doi.org/10.1007/s10904-013-9986-7

    Article  CAS  Google Scholar 

  22. G. Yang and Z.-H. Sun. Tuning the structural topologies of two luminescent metal-organic frameworks through altering auxiliary ligand. Inorg. Chem. Commun., 2013, 29, 94-96. https://doi.org/10.1016/j.inoche.2012.12.022

    Article  CAS  Google Scholar 

  23. X.-H. Lou, C. Xu, H.-M. Li, Z.-J. Zhang, and H. Zhang. Construction of two new metal–organic entangled frameworks via varying flexible bis(imidazole)-based auxiliary ligands. J. Inorg. Organomet. Polym. Mater., 2013, 23(3), 659-664. https://doi.org/10.1007/s10904-013-9829-6

    Article  CAS  Google Scholar 

  24. J.-X. Yang, Y.-Y. Qin, J.-K. Cheng, X. Zhang, and Y.-G. Yao. Construction of a series of Zn(II) compounds with different entangle motifs by varying flexible aliphatic dicarboxylic acids. Cryst. Growth Des., 2015, 15(5), 2223-2234. https://doi.org/10.1021/cg501879w

    Article  CAS  Google Scholar 

  25. S.-W. Sun, G.-F. Wang, J. Song, and B.-W. Chang. Synthesis of a cobalt coordination polymer based on 4-(1H-Imidazol-1-yl)phenyl)methanone and fumaric acid. Crystallogr. Rep., 2020, 65(7), 1138-1141. https://doi.org/10.1134/s1063774520070226

    Article  CAS  Google Scholar 

  26. G. Günay Sezer, O. Zafer Yeşilel, O. Şahin, and A. D. Burrows. Zinc(II) and cadmium(II) coordination polymers containing phenylenediacetate and bis(imidazol-1-ylmethyl)benzene linkers: The effect of ligand isomers on the solid state structures. J. Solid State Chem., 2017, 252, 8-21. https://doi.org/10.1016/j.jssc.2017.04.038

    Article  CAS  Google Scholar 

  27. G.-H. Cui, J.-R. Li, J.-L. Tian, X.-H. Bu, and S. R. Batten. Multidimensional metal–organic frameworks constructed from flexible bis(imidazole) ligands. Cryst. Growth Des., 2005, 5(5), 1775-1780. https://doi.org/10.1021/cg050039l

    Article  CAS  Google Scholar 

  28. X.-Q. Liang, D.-P. Li, C.-H. Li, X.-H. Zhou, Y.-Z. Li, J.-L. Zuo, and X.-Z. You. Syntheses, structures, and physical properties of camphorate coordination polymers controlled by semirigid auxiliary ligands with variable coordination positions and conformations. Cryst. Growth Des., 2010, 10(6), 2596-2605. https://doi.org/10.1021/cg1000107

    Article  CAS  Google Scholar 

  29. M. Du, C.-P. Li, C.-S. Liu, and S.-M. Fang. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord. Chem. Rev., 2013, 257(7/8), 1282-1305. https://doi.org/10.1016/j.ccr.2012.10.002

    Article  CAS  Google Scholar 

  30. M. O. Barsukova, S. A. Sapchenko, K. A. Kovalenko, D. G. Samsonenko, A. S. Potapov, D. N. Dybtsev, and V. P. Fedin. Exploring the multifunctionality in metal–organic framework materials: how do the stilbenedicarboxylate and imidazolyl ligands tune the characteristics of coordination polymers? New J. Chem., 2018, 42(8), 6408-6415. https://doi.org/10.1039/c8nj00494c

    Article  CAS  Google Scholar 

  31. S.-S. Chen. The roles of imidazole ligands in coordination supramolecular systems. CrystEngComm, 2016, 18(35), 6543-6565. https://doi.org/10.1039/c6ce01258b

    Article  CAS  Google Scholar 

  32. M. O. Barsukova, D. G. Samsonenko, T. V. Goncharova, A. S. Potapov, S. A. Sapchenko, D. N. Dybtsev, and V. P. Fedin. Coordination polymers with adjustable dimensionality based on CuII and bis-imidazolyl bridging ligand. Russ. Chem. Bull., 2016, 65(12), 2914-2919. https://doi.org/10.1007/s11172-016-1677-4

    Article  CAS  Google Scholar 

  33. H.-J. Cheng, X.-Y. Tang, R.-X. Yuan, and J.-P. Lang. Structural diversity of Zn(II) coordination polymers based on bis-imidazolyl ligands and 5-R-1,3-benzenedicarboxylate and their photocatalytic properties. CrystEngComm, 2016, 18(25), 4851-4862. https://doi.org/10.1039/c6ce00768f

    Article  CAS  Google Scholar 

  34. M. Barsukova, T. Goncharova, D. Samsonenko, D. Dybtsev, and A. Potapov. Synthesis, crystal structure, and luminescent properties of new zinc(II) and cadmium(II) metal-organic frameworks based on flexible bis(imidazol-1-yl)alkane ligands. Crystals, 2016, 6(10), 132. https://doi.org/10.3390/cryst6100132

    Article  CAS  Google Scholar 

  35. L. Zhu, Y.-S. Hu, L.-H. Zhu, and Z. An. Synthesis, crystal structures and thermal analysis of two Co(II) coordination polymers: 3D interdigitated framework to fourfold interpenetrated dia net. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2014, 44(8), 1080-1085. https://doi.org/10.1080/15533174.2013.797461

    Article  CAS  Google Scholar 

  36. G.-X. Liu, K. Zhu, H.-M. Xu, S. Nishihara, R.-Y. Huang, and X.-M. Ren. Construction of hybrid d10 metal–organic frameworks by flexible aromatic dicarboxylate and N-donor ligands: syntheses, structures and physical properties. CrystEngComm, 2009, 11(12), 2784. https://doi.org/10.1039/b916280c

    Article  CAS  Google Scholar 

  37. W.-L. Zhang, Y.-Y. Liu, J.-F. Ma, H. Jiang, and J. Yang. Syntheses and characterizations of nine coordination polymers of transition metals with carboxylate anions and bis(imidazole) ligands. Polyhedron, 2008, 27(16), 3351-3358. https://doi.org/10.1016/j.poly.2008.07.026

    Article  CAS  Google Scholar 

  38. P. K. Dhal and F. H. Arnold. Metal-coordination interactions in the template-mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper(II) iminodiacetate containing polymers. Macromolecules, 1992, 25(25), 7051-7059. https://doi.org/10.1021/ma00051a050

    Article  CAS  Google Scholar 

  39. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  40. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  41. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  42. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Streek. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr., 2006, 39(3), 453-457. https://doi.org/10.1107/s002188980600731x

    Article  CAS  Google Scholar 

  43. O. Z. Yeşilel, U. Güler, E. Çiftçi, and M. Arıcı. A series of coordination polymers constructed by 2-phenylsuccinic acid and flexible bis(imidazole) ligands: Syntheses, structures, and photoluminescent properties. J. Mol. Struct., 2022, 1262, 132991. https://doi.org/10.1016/j.molstruc.2022.132991

    Article  CAS  Google Scholar 

  44. K. Singh, M. Barwa, and P. Tyagi. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur. J. Med. Chem., 2006, 41(1), 147-153. https://doi.org/10.1016/j.ejmech.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  45. M. Prabu, K. S. Asha, M. Sinha, A. Poduval, and S. Mandal. The structural diversity, band gap energy and photoluminescence properties of thiophenedicarboxylate based coordination polymers. CrystEngComm, 2016, 18(4), 536-543. https://doi.org/10.1039/c5ce01886b

    Article  CAS  Google Scholar 

  46. E. Çiftçi, M. Arıcı, E. Demir, R. Demir-Cakan, M. Wriedt, and O. Z. Yeşilel. Synthesis, characterization, optical and electrochemical performances of 3-fold interpenetrated copper(II) coordination polymer with a flexible zwitterionic ligand. J. Solid State Chem., 2021, 302, 122375. https://doi.org/10.1016/j.jssc.2021.122375

    Article  CAS  Google Scholar 

  47. E. Çiftçi, M. Kaya, M. Arıcı, and O. Z. Yeşilel. Two copper(II) coordination polymers constructed from 3,3-dimethylglutarate and citrate ligands. J. Mol. Struct., 2020, 1220, 128695. https://doi.org/10.1016/j.molstruc.2020.128695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Arslan Biçer.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114396.https://doi.org/10.26902/JSC_id114396

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan Biçer, F., Yeşilel, O.Z. Synthesis, Characterization and the Effect of the Auxiliary Ligands on the Dimensionality of Two Cobalt(II)-Fumarate Coordination Polymers with Bis(Imidazole) Ligands. J Struct Chem 64, 1423–1434 (2023). https://doi.org/10.1134/S0022476623080073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080073

Keywords

Navigation