Journal of Chemical Sciences

, Volume 120, Issue 6, pp 573–578 | Cite as

Two approaches for enhancing the hydrogenation properties of palladium: Metal nanoparticle and thin film over layers

Article

Abstract

In the present study, two approaches have been used for enhancing the hydrogenation properties of Pd. In the first approach, metal thin film (Cu, Ag) has been deposited over Pd and hydrogenation properties of bimetal layer Cu (thin film)/Pd(thin film) and Ag(thin film)/Pd(thin film) have been studied. In the second approach, Ag metal nanoparticles have been deposited over Pd and hydrogenation properties of Ag (nanoparticle)/Pd (thin film) have been studied and compared with Ag(thin film)/Pd(thin film) bimetal layer system. The observed hydrogen sensing response is stable and reversible over a number of hydrogen loading and deloading cycles in both bimetallic systems. Alloying between Ag and Pd is suppressed in case of Ag(nanoparticle)/Pd(thin film) bimetallic layer on annealing as compared to Ag (thin film)/Pd(thin film).

Keywords

Cu/Pd bimetal layers Ag/Pd bimetal layers nanoparticles hydrogen sensing XPS GAXRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis F A 1967 The palladium-hydrogen system (London: Academic Press)Google Scholar
  2. 2.
    Alefeld G and Völkl J 1978 Hydrogen in metals I, II (Berlin: Springer-Verlag)Google Scholar
  3. 3.
    Moy R 2003 Nature 301 47Google Scholar
  4. 4.
    Schlapbach L and Züttel A 2001 Nature 414 353CrossRefGoogle Scholar
  5. 5.
    Mckee J M 1991 Hydrogen gas sensor and method of manufacture (US Patent 5012672)Google Scholar
  6. 6.
    David L 1984 Handbook of batteries and fuel cells (New York: McGraw-Hill)Google Scholar
  7. 7.
    Zhong W and Tomanek D 1993 Nature 362 435CrossRefGoogle Scholar
  8. 8.
    Edlund D J and Pledger W A 1993 J. Membr. Sci. 77 255CrossRefGoogle Scholar
  9. 9.
    Lopez N and Norskov J K 2001 Surf. Sci. 477 59CrossRefGoogle Scholar
  10. 10.
    Bhatia B and Sholl D S 2005 Phys. Rev. B72 224302Google Scholar
  11. 11.
    Khanuja M, Varandhani D and Mehta B R 2007 Appl. Phys. Lett. 91 253121Google Scholar
  12. 12.
    Rodriguez J A and Goodman D W 1992 Science 257 897CrossRefGoogle Scholar
  13. 13.
    Gauthier Y, Schmid M, Padovani S, Lundgren E, Buš V, Kresse G, Redinger J and Varga P 1994 Phys. Rev. Lett. 87 036103-1Google Scholar
  14. 14.
    Kamakoti P, Morreale B D, Ciocco M V, Howard B H, Killmeyer R P, Cugini A V and Sholl D S 2005 Science 307 569CrossRefGoogle Scholar
  15. 15.
    McKinley D 1969 US Patent No. 3439474Google Scholar
  16. 16.
    Cheng Y, Peña M, Fierro J, Hui D and Yeung K 2002 J. Membr. Sci. 204 329CrossRefGoogle Scholar
  17. 17.
    Knapton A 1977 Plat. Metal. Rev. 21 44Google Scholar
  18. 18.
    Khanuja M, Mehta B R and Shivaprasad S M 2008 Thin Soild Films 516 5435CrossRefGoogle Scholar
  19. 19.
    Andersen T H, Bech L, Li Z, Hoffmann S V and Onsgaard J 2004 Surf. Sci. 559 111CrossRefGoogle Scholar
  20. 20.
    Aruna I, Mehta B R, Malhotra L K and Shivaprasad S M 2004 Adv. Mater. 16 169CrossRefGoogle Scholar
  21. 21.
    Abrikosov I A, Olovsson W and Johansson B 2001 Phys. Rev. Lett. 87 176403-1Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • Manika Khanuja
    • 1
  • B. R. Mehta
    • 1
  • S. M. Shivaprasad
    • 2
  1. 1.Thin Film Laboratory, Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Chemistry and Physics of Materials UnitJawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)BangaloreIndia

Personalised recommendations