Skip to main content
Log in

Bimetallic alloy Pt/Ag nanoparticles with enhanced catalytic activity for formic acid oxidation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we report the synthesis of Pt/Ag bimetallic alloy catalyst through combining the ion implantation and electrodeposition method. Ag nanoparticles are employed as the seeds for the growth of Pt nanoparticles. Pt/Ag alloy catalyst demonstrates much higher catalytic activity than pure Pt catalyst, which is about three times more active on the basis of equivalent Pt electrochemically active surface area than that of the pure Pt catalyst. The ion implantation of Ag efficiently enhances the catalytic activity of Pt catalyst for formic acid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Rice, R.I. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sour. 111, 83–89 (2002)

    Article  ADS  Google Scholar 

  2. V. Mazumder, Y. Lee, S.H. Sun, Adv. Funct. Mater. 20, 1224–1231 (2010)

    Article  Google Scholar 

  3. Y.J. Kang, L. Qi, M. Li, C.B. Murray, ACS Nano 6, 2818–2825 (2012)

    Article  Google Scholar 

  4. G. Samjeske, A. Miki, S. Ye, A. Yamakata, Y. Mukouyama, H. Okamoto, M. Osawa, J. Phys. Chem. B 109, 23509–23516 (2005)

    Article  Google Scholar 

  5. M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 140, 363–378 (2008)

    Article  ADS  Google Scholar 

  6. B.C.H. Steele, A. Heinzel, Nature 414, 345–352 (2001)

    Article  ADS  Google Scholar 

  7. W. Vielstich, A. Lamm, H.A. Gasteiger, Hand book of Fuel Cells: Fundamentals, Technology, and Applications, 1st edn. (Wiley, West Sussex, 2003)

    Google Scholar 

  8. W. Vogel, L. Lundquist, P. Ross, P. Stonehart, Electrochim. Acta 20, 79–93 (1975)

    Article  Google Scholar 

  9. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B 56, 9–35 (2005)

    Article  Google Scholar 

  10. P.J. Ferreira, G.J. La’O, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152, A2256–A2271 (2005)

    Article  Google Scholar 

  11. I. Smova-Sloufova, F. Lednicky, A. Gemperle, J. Gemperlova, Langmuir 16, 9928–9935 (2000)

    Article  Google Scholar 

  12. M. Kambayashi, J. Zhang, M. Oyama, Cryst. Growth Des. 5, 81–84 (2005)

    Article  Google Scholar 

  13. T. Xu, S. Yang, J. Lu, Q. Xue, J. Li, W. Guo, Y. Sun, Diam. Relat. Mater. 10, 1441–1447 (2001)

    Article  ADS  Google Scholar 

  14. R.S. Jayashree, J.S. Spendelow, J. Yeom, C. Rastogi, M.A. Shannon, P.J.A. Kenis, Electrochim. Acta 50, 4674–4682 (2005)

    Article  Google Scholar 

  15. E. Casado-Rivera, D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A.C.D. Angelo, F.J. Disalvo, H.D. Abruna, J. Am. Chem. Soc. 126, 4043–4049 (2004)

    Article  Google Scholar 

  16. F. Papa, A. Miyazaki, M. Scurtu, A.C. Ianculescu, I. Balint, J. Nanopart. Res. 16, 2249 (2014)

    Article  Google Scholar 

  17. S. Charnvanichborikarn, J. Wong-Leung, J.S. Williams, J. Appl. Phys. 106, 1035261–1035268 (2009)

    Article  Google Scholar 

  18. W.Q. Zhang, J.Z. Yang, X.M. Lu, ACS Nano 6, 7397–7405 (2012)

    Article  MathSciNet  Google Scholar 

  19. D. Zhao, B. Yan, B.Q. Xu, Electrochem. Commun. 10, 884–887 (2008)

    Article  ADS  Google Scholar 

  20. J. Yang, J.Y. Lee, L.X. Chen, H.P. Too, J. Phys. Chem. B 109, 5468–5472 (2005)

    Article  Google Scholar 

  21. L. Tammeveski, H. Erikson, A. Sarapuu, J. Kozlova, P. Ritslaid, V. Sammelselg, K. Tammeveski, Electrochem. Commun. 20, 15–18 (2012)

    Article  Google Scholar 

  22. A.S. Rad, A. Mirabi, E. Binaian, H. Tayebi, Int. J. Electrochem. Sci. 6, 3671–3683 (2011)

    Google Scholar 

  23. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Sens. Actuators A 144, 185–193 (2008)

    Article  Google Scholar 

  24. K. Okamura, T. Ishiji, M. Iwaki, Y. Suzuki, K. Takahashi, Surf. Coat. Technol. 201, 8116–8119 (2007)

    Article  Google Scholar 

  25. H. Quan, S.U. Park, J. Park, Electrochim. Acta 55, 2232–2237 (2010)

    Article  Google Scholar 

  26. Y.J. Kang, L. Qi, M. Li, R.E. Diaz, C.B. Murray, ACS Nano 6, 2818–2825 (2012)

    Article  Google Scholar 

  27. T. Matsushita, Y. Shiraishi, S. Horiuchi, N. Toshima, Bull. J. Chem. Soc. 80, 1217–1225 (2007)

    Article  Google Scholar 

  28. N. Toshima, R. Ito, T. Matsushita, Y. Shiraishi, Catal. Today 122, 239–244 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors owe special thanks to the support and sponsor of the National Natural Science Foundation of China (No.20873012) and the Key Lab of Radiation Beam Technology and Material Modification of National Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Hu, J. Bimetallic alloy Pt/Ag nanoparticles with enhanced catalytic activity for formic acid oxidation. Appl. Phys. A 117, 809–813 (2014). https://doi.org/10.1007/s00339-014-8441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8441-0

Keywords

Navigation