Skip to main content
Log in

Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder due to insulin resistance that can be caused by both genetic and environmental factors. In 2018, the American Diabetes Association (ADA) estimated more than 500 million T2DM cases globally. In recent years, studies conducted on humans and animals have suggested that non-coding RNAs, namely, microRNAs (miRNAs), post-transcriptionally regulate gene expression that can bring changes in normal physiology, resulting in the development of metabolic diseases. miRNAs also regulate different cellular processes including insulin synthesis and its secretion from pancreatic β-islet cells, its development and function, insulin signaling and glucose homeostasis. Dysregulation of miRNA can affect the functioning of different tissues during the progression of T2DM. This review focuses on various miRNAs that influence the development of β-cells and insulin secretion, various protein cascades that play an important role in insulin signaling and glucose uptake, and their role in insulin resistance. Similarly, the long noncoding RNAs also known as lncRNAs and their β-cell characteristics involved in T2DM have been discussed. Finally, the significance of miRNAs and their mRNA targets as effective biomarkers and therapeutics in studying the early onset and progression of T2DM have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

AGO2:

argonaute 2

ANRIL:

antisense RNA present in the INK4

βlinc1:

β-cell long intergenic noncoding RNA 1

Cbl:

casitas B-lineage lymphoma

Cbl/CAP:

Cbl-associated protein

DGCR8:

DiGeorge syndrome critical region 8

GLUT-2:

glucose transporter 2

GLUT 4:

glucose transporter 4

GTP:

guanosine-5′-triphosphate

GSIS:

glucose-stimulated insulin secretion

G6P:

glucose-6-phosphate

IGF-1R:

insulin-like growth factors-1 receptor

INSR:

insulin receptors

IRS 1/2:

insulin receptor substrate 1/2

lncRNAs:

long non-coding RNAs

Meg3:

maternal expressed gene 3

MFN2:

mitofusin 2

PDK1:

3-phosphoinositide-dependent protein kinase-1

PIP2:

phosphatidylinositol 4, 5-bisphosphate

PIP3:

phosphatidylinositol (3, 4, 5)-trisphosphate (Ptdlns (3, 4, 5)P3)

PI3K:

phosphoinositide 3-kinase

PTPN1:

protein tyrosine phosphatase non-receptor type 1

Pre-miRNA:

precursor microRNA

Pri-miRNA:

primary microRNA

PTEN:

phosphatase and tensin homolog

PVT1:

plasmacytoma variant translocation 1 gene

Ran:

Ras-related nuclear protein

RNA pol II/III:

RNA polymerase II/III

RISC:

RNA-induced silencing complex

SUR:

sulfonylurea receptors

TET:

ten-eleven translocation

TRBP:

transactivating response RNA-binding protein

T2DM:

type 2 diabetes mellitus

TUG1:

taurine upregulated gene 1

XPO5:

exportin-5

References

  • Agarwal P, Srivastava R, Srivastava AK, et al. 2013 MiR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. Biochim. Biophys. Acta Mol. Basis Dis. 1832 1294–1303

    Article  CAS  Google Scholar 

  • Akerman I, Tu Z, Beucher A, et al. 2017 Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab. 25 400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcón CR, Lee H, Goodarzi H, et al. 2015 N6-methyladenosine marks primary microRNAs for processing. Nature 519 482–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez ML and DiStefano JK 2011 Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 6 e18671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez ML, Khosroheidari M, Eddy E, et al. 2016 Correction: Role of MicroRNA 1207–5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One 11 24204837

    Article  Google Scholar 

  • Alvino CL, Ong SC, McNeil KA, et al. 2011 Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One 6 e27488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnes L, Akerman I, Balderes DA, et al. 2016 βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function. Genes Dev. 30 502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM, et al. 2011 Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 108 5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avgeris M, Kokkinopoulou I, Maratou E, et al. 2020 Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res. Clin. Pract. 164 108187

    Article  CAS  PubMed  Google Scholar 

  • Backe MB, Novotny GW, Christensen DP, et al. 2014 Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 6 37–41

    Article  Google Scholar 

  • Bartel DP 2009 MicroRNAs: Target recognition and regulatory functions. Cell 136 215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijkerk R, Esguerra JLS, Ellenbroek JH, et al. 2019 In Vivo Silencing of MicroRNA-132 reduces blood glucose and improves insulin secretion. Nucleic Acid Therapeut. 29 67–72

    Article  CAS  Google Scholar 

  • Bogan JS 2012 Regulation of glucose transporter translocation in health and diabetes. Annu. Rev. Biochem. 81 507–532

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, et al. 2007 p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17 1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Bouzakri K, Roques M, Gual P, et al. 2003 Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52 1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Burré J, Sharma M, Tsetsenis T, et al. 2010 α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329 1663–1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casellas A, Mallol C, Salavert A, et al. 2015 Insulin-like growth factor 2 overexpression induces β-cell dysfunction and increases beta-cell susceptibility to damage. J. Biol. Chem. 290 16772–16785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SJ, Keim P and Steiner DF 1976 Cell free synthesis of rat preproinsulins: Characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73 1964–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li L, Wang S, et al. 2014 Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 5 11873–11885

    Article  PubMed  PubMed Central  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, et al. 2005 TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppola T, Frantz C, Perret-Menoud V, et al. 2002 Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol. Biol. Cell. 13 1906–1915

  • Cordes KR, Sheehy NT, White MP, et al. 2009 MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460 705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta I and Chatterjee A 2021 Recent advances in miRNA delivery systems. Methods Protocols 4 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dávalos A, Goedeke L, Smibert P, et al. 2011 miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA 108 9232–9237

    Article  PubMed  PubMed Central  Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RHA, et al. 2004 Processing of primary microRNAs by the microprocessor complex. Nature 432 231–235

    Article  CAS  PubMed  Google Scholar 

  • Ding XQ, Gu TT, Wang W, et al. 2015 Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol. Nutr. Food Res. 59 2355–2370

    Article  CAS  PubMed  Google Scholar 

  • Donath MY, Ehses JA, Maedler K, et al. 2005 Mechanisms of β-cell death in type 2 diabetes. Diabetes 54 2–7

    Article  Google Scholar 

  • Egea PF, Tsuruta H, de Leon GP, et al. 2008 Structures of the signal recognition particle receptor from the Archaeon Pyrococcus furiosus: Implications for the targeting step at the membrane. PLoS One 3 e3619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eliasson L 2017 The small RNA miR-375 – a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol. Cell. Endocrinol. 456 95–101

    Article  CAS  PubMed  Google Scholar 

  • Eliasson L and Esguerra JLS 2014 Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol. 211 273–284

    Article  CAS  Google Scholar 

  • Esau C, Kang X, Peralta E, et al. 2004 MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279 52361–52365

    Article  CAS  PubMed  Google Scholar 

  • Esguerra JLS, Bolmeson C, Cilio CM, et al. 2011 Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6 e18613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito DL, Li Y, Cama A , et al. 2001 Tyr612 and Tyr632 in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142 2833–2840

    Article  CAS  PubMed  Google Scholar 

  • Fachim HA, Loureiro CM, Siddals K, et al. 2020 Circulating microRNA changes in patients with impaired glucose regulation. Adipocyte 9 443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinbaum R, Ambros V and Lee R 2004 The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 116 843–854

    Google Scholar 

  • Fernández-de Frutos M, Galán-Chilet I, Goedeke L, et al. 2019 MicroRNA 7 Impairs Insulin signaling and regulates Aβ levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver X receptor pathway. Mol. Cell. Biol. 39 e00170-e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Font-Cunill B, Arnes L, Ferrer J, et al. 2018 Long Non-coding RNAs as local regulators of pancreatic islet transcription factor genes. Front. Genet. 9 524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Jin L, Wang X, et al. 2013 MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc. Natl. Acad. Sci. USA 110 17892–17897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZR, Gilbert E and Liu D 2012 Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9 25–53

    Article  CAS  Google Scholar 

  • Gallo W, Esguerra JLS, Eliasson L, et al. 2018 miR-483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease. PLoS One 13 e0206974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Jacobo RE, Uresti-Rivera EE, Portales-Pérez DP, et al. 2019 Circulating miR-146a, miR-34a and miR-375 in type 2 diabetes patients, pre-diabetic and normal-glycaemic individuals in relation to β-cell function, insulin resistance and metabolic parameters. Clin. Exp. Pharmacol. Physiol. 46 1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Ghaneh T, Zeinali F, Babini H, et al. 2020 An increase in the expression of circulating miR30d-5p and miR126-3p is associated with intermediate hyperglycaemia in Iranian population. Arch. Physiol. Biochem. https://doi.org/10.1080/13813455.2020.1839105

    Article  PubMed  Google Scholar 

  • Goel A, Dixit M, Saeed U, et al. 2008 Synthesis, molecular docking and PTP1B inhibitory activity of functionalized 4,5-dihydronaphthofurans and dibenzofurans. Med. Chem. 4 18–24

    Article  PubMed  Google Scholar 

  • Guo C, Sah JF, Beard L, et al, 2008 The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47 939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatting M, Tavares C, Sharabi K, et al. 2018 Insulin regulation of gluconeogenesis. Ann. NY Acad. Sci. 1411 21–35

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, et al. 2004 The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18 3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson RL, Craig DW, Millis MP, et al. 2007 Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56 975–983

    Article  CAS  PubMed  Google Scholar 

  • He A, Zhu L, Gupta N, et al. 2007 Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol. 21 2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Hennessy E, Clynes M, Jeppesen PB, et al. 2010 Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem. Biophys. Res. Commun. 396 457–462

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Carrillo E and Berkhout B 2017 Survey and summary: Dicer-independent processing of small RNA duplexes: Mechanistic insights and applications. Nucleic Acids Res. 45 10369–10379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Ono K, Nishi H, et al. 2009 MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem. Biophys. Res. Commun. 389 315–320

    Article  CAS  PubMed  Google Scholar 

  • Hua Y, Zhang Y and Ren J 2012 IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: Role of microRNA-1 and microRNA-133a. J. Cell. Mol. Med. 16 83–95

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Chen J, Wang J, et al. 2019 Palmitic acid induces MicroRNA-221 expression to decrease glucose uptake in HepG2 cells via the PI3K/AKT/GLUT4 pathway. BioMed Res. Int. 2019

  • Huang XF and Arvan P 1995 Intracellular transport of proinsulin in pancreatic β-cells: Structural maturation probed by bisulfide accessibility. J. Biol. Chem. 270 20417–20423

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Yan Y, Xv W, et al. 2018 A new insight into the roles of miRNAs in metabolic syndrome. BioMed Res. Int.2018. https://doi.org/10.1155/2018/7372636

  • Iacomino G and Siani A 2017 Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 12 23

    Article  PubMed  PubMed Central  Google Scholar 

  • Icli B, Wu W, Ozdemir D, et al. 2019 MicroRNA-615-5p regulates angiogenesis and tissue repair by targeting Akt/eNOS (protein kinase B/endothelial nitric oxide synthase) signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 39 1458–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janus A, Szahidewicz-Krupska E, Mazur G, et al. 2016 Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm. https://doi.org/10.1155/2016/3634948

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong HJ, Park SY, Yang WM, et al. 2013 The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells. Biochem. Biophys. Res. Commun. 434 503–508

    Article  CAS  PubMed  Google Scholar 

  • Jeong JH, Cheol Kang Y, Piao Y, et al. 2017 MiR-24-mediated knockdown of H2AX damages mitochondria and the insulin signaling pathway. Exp. Mol. Med. 49 e313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Xu C, Lei F, et al. 2017 MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. Sci. Rep. 7 5270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo MH, Shin S, Jung SR, et al. 2015 Human argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 59 117–124

    Article  CAS  PubMed  Google Scholar 

  • Jordan SD, Krüger M, Willmes DM, et al. 2011 Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 13 434–448

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ and Suh Y 2015 Regulation of IGF -1 signaling by microRNAs. Front. Genet. 5 472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kameswaran V, Bramswig NC, McKenna LB, et al. 2014 Epigenetic regulation of the DLK1-MEG3 MicroRNA cluster in human type 2 diabetic islets. Cell Metab. 19 135–145

    Article  CAS  PubMed  Google Scholar 

  • Karolina DS, Armugam A, Tavintharan S, et al. 2011 MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6 e22839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karolina DS, Sepramaniam S, Tan HZ, et al. 2013 MiR-25 and miR-92a regulate insulin i biosynthesis in rats. RNA Biol. 10 1365–1378

    Article  CAS  Google Scholar 

  • Koh EH, Chernis N, Saha PK, et al. 2018 MiR-30a remodels subcutaneous adipose tissue inflammation to improve insulin sensitivity in obesity. Diabetes 67 2541–2553

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolfschoten IGM, Roggli E, Nesca V, et al. 2009 Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes. Metab. 11 118–129

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhu J, Han W, et al. 2011 Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol. 48 61–69

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Sharma RB, Ly S, et al. 2018 CDKN2A/B T2D genome-wide association study risk SNPs impact locus gene expression and proliferation in human islets. Diabetes 67 872–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Sala L, Mrakic-Sposta S, Tagliabue E, et al. 2019 Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc. Diabetol. 18 18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan S and Albinsson S 2020 Regulation of IRS-1, insulin signaling and glucose uptake by miR-143/145 in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 529 119–125

    Article  CAS  PubMed  Google Scholar 

  • Lang H, Ai Z, You Z, et al. 2015 Characterization of miR-218/322- Stxbp1 pathway in the process of insulin secretion. J. Mol. Endocrinol. 54 65–73

    Article  CAS  PubMed  Google Scholar 

  • Lang H, Xiang Y, Lin N, et al. 2018 Identification of a panel of MiRNAs as positive regulators of insulin release in pancreatic Β-cells. Cell. Physiol. Biochem. 48 185–193

    Article  CAS  PubMed  Google Scholar 

  • Latreille M, Hausser J, Stützer I, et al. 2014 MicroRNA-7a regulates pancreatic β cell function. J. Clin. Invest. 124 2722–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latreille M, Herrmanns K, Renwick N, et al. 2015 miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J. Mol. Med. 93 1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, et al. 2003 The nuclear RNase III Drosha initiates microRNA processing. Nature 425 415–419

    Article  CAS  PubMed  Google Scholar 

  • LeRoith D, Werner H, Beitner-Johnson D, et al. 1995 Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Rev. 16 143–163

    Article  CAS  Google Scholar 

  • LeRoith D and Roberts CT 2003 The insulin-like growth factor system and cancer. Cancer Lett. 195 127–137

    Article  CAS  PubMed  Google Scholar 

  • Ling HY, Ou HS, Feng SD, et al. 2009 Changes in microrna (mir) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clin. Exp. Pharmacol. Physiol. 36 32–39

    Article  CAS  Google Scholar 

  • Ling HY, Hu B, Hu XB, et al. 2012 MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp. Clin. Endocrinol. Diabetes 120 553–559

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Cao H, Ye C, et al. 2014 Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signaling. Nature Commun. 5 5684

    Article  CAS  Google Scholar 

  • Lovis P, Gattesco S and Regazzi R 2008a Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem. 389 305–312

    Article  CAS  PubMed  Google Scholar 

  • Lovis P, Roggli E, Laybutt DR, et al. 2008b Alterations in MicroRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 57 2728–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Buchan RJ and Cook SA 2010 MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc. Res. 86 410–420

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Güttinger S, Calado A, et al. 2004 Nuclear export of MicroRNA precursors. Science 303 95–98s

    Article  CAS  PubMed  Google Scholar 

  • Lupi R and del Prato S 2008 Β-cell apoptosis in type 2 diabetes: Quantitative and functional consequences. Diabetes Metab. 34 56–64

    Article  Google Scholar 

  • Lynn FC, Skewes-Cox P, Kosaka Y, et al. 2007 MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56 2938–2945

    Article  CAS  PubMed  Google Scholar 

  • Mafi A, Aghadavod E, Mirhosseini N, et al. 2018 The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J. Cell. Physiol. 234 42–50

    Article  PubMed  CAS  Google Scholar 

  • Marchese FP, Raimondi I and Huarte M 2017 The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18 206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirra P, Raciti GA, Nigro C, et al. 2015 Circulating miRNAs as intercellular messengers, potential biomarkers and therapeutic targets for type 2 diabetes. Epigenomics 7 653–667

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, et al. 2008 Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 105 10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller DE and Kaufman KD 2005 Metabolic syndrome: A clinical and molecular perspective. Annu. Rev. Med. 56 45–62

    Article  CAS  PubMed  Google Scholar 

  • Morán I, Akerman I, van de Bunt M, et al. 2012 Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16 435–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motterle A, Gattesco S, Peyot ML, et al. 2017 Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. Mol. Metab. 6 1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mraz M, Malinova K, Mayer J, et al. 2009 MicroRNA isolation and stability in stored RNA samples. Biochem. Biophys. Res. Commun. 390 1–4

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Hayder H, Zayed Y, et al. 2018 Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9 402

    Article  Google Scholar 

  • Ofori JK, Salunkhe VA, Bagge A, et al. 2017 Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci. Rep. 7 44986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olokoba AB, Obateru OA and Olokoba LB 2012 Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 27 269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Lee JH, Ha M, et al. 2009 miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat. Struct. Mol. Biol. 16 23–29

    Article  CAS  PubMed  Google Scholar 

  • Patzelt C, Labrecque AD, Duguid JR, et al. 1978 Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc. Natl. Acad. Sci. USA 75 1260–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaisance V, Abderrahmani A, Perret-Menoud V, et al. 2006 MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem. 281 26932–26942

    Article  CAS  PubMed  Google Scholar 

  • Popa S and Mot M 2013 Beta-cell function and failure in type 2 diabetes. Type 2 Diabetes DOI: https://doi.org/10.5772/56467

  • Poy MN, Eliasson L, Krutzfeldt J, et al. 2004 A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 226–230

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Hausser J, Trajkovski M, et al. 2009 miR-375 maintains normal pancreatic α- and β-cell mass. Proc. Natl. Acad. Sci. USA 106 5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putta S, Lanting L, Sun G, et al. 2012 Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23 458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Zhao Y, Liu Y, et al. 2016 miR-483-3p regulates hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice. Biochem. Biophys. Res. Commun. 477 541–547

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran D, Roy U, Garg S, et al. 2011 Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 278 1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Ravassard P, Hazhouz Y, Pechberty S, et al. 2011 A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121 3589–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, et al. 2007 Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26 731–743

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri S 2012 MicroRNAs overexpressed in growth-restricted rat skeletal muscles regulate the glucose transport in cell culture targeting central TGF-β factor SMAD4. PLoS One 7 e34596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggli E, Gattesco S, Caille D, et al. 2012 Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 61 1742–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Shankar K, Beg M, et al. 2018 Chronic hyperinsulinemia induced miR-27b is linked to adipocyte insulin resistance by targeting insulin receptor. J. Mol. Med. 96 315–333

  • van Rooij E, Purcell AL and Levin AA 2012 Developing MicroRNA therapeutics. Circ. Res. 110 496–507

    Article  PubMed  CAS  Google Scholar 

  • Ryu HS, Park SY, Ma D, et al. 2011 The induction of microrna targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 6 e17343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed D, He M, Hong C, et al. 2010 MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of fas ligand. J. Biol. Chem. 285 20281–20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD, et al. 1998 Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA 95 7772–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar D, Venugopal B, Sekar P, et al. 2016 Role of microRNA 21 in diabetes and associated/related diseases. Gene 582 14–18

    Article  CAS  PubMed  Google Scholar 

  • Seyhan AA, Nunez Lopez YO, Xie H, et al. 2016 Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: A pilot cross-sectional study. Sci. Rep. 6 31479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Xu H, Xue J, et al. 2018 MALAT1 via microRNA-17 regulation of insulin transcription is involved in the dysfunction of pancreatic β-cells induced by cigarette smoke extract. J. Cell. Physiol. 233 8862–8873

    Article  PubMed  Google Scholar 

  • Takanabe R, Ono K, Abe Y, et al. 2008 Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun. 376 728–732

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Muniappan L, Tang G, et al. 2009 Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription. RNA 15 287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattikota SG, Rathjen T, Hausser J, et al. 2015 miR-184 regulates pancreatic β-cell function according to glucose metabolism. J. Biol. Chem. 290 20284–20294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesauro M and Mazzotta FA 2019 Pathophysiology of diabetes. Transplantation, bioengineering, and regeneration of the endocrine pancreas (Elsevier) pp. 37-47

  • Vickers KC, Palmisano BT, Shoucri BM, et al. 2011 MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13 423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivacqua A, de Marco P, Belfiore A, et al. 2017 Recent advances on the role of microRNAs in both insulin resistance and cancer. Curr. Pharmaceut. Design 23 3658–3666

    Article  CAS  Google Scholar 

  • Wang B, Sun F, Dong N, et al. 2014 MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagn. Pathol. 19 211

    Article  CAS  Google Scholar 

  • Wang XH, Qian RZ, Zhang W, et al. 2009 MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin. Exp. Pharmacol. Physiol. 36 181–188

    Article  PubMed  CAS  Google Scholar 

  • Weale CJ, Matshazi DM, Davison GM, et al. 2020 Circulating miR-30a-5p and miR-182-5p in prediabetes and screen-detected diabetes mellitus. Diabetes Metab. Syndr. Obes. 13 5037–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei R, Yang J, Liu GQ, et al. 2013 Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518 246–255

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I and Ruvkun G 1993 Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75 855–862

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Ding Y, Tanaka Y et al. 2014 Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 11 1185–1200

    Article  PubMed  PubMed Central  Google Scholar 

  • Xihua L, Shengjie T, Weiwei G, et al. 2019 Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl. Res. 205 33–43

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Du X, Xu J, et al. 2020 Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 18 e3000603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Liao X, Lu N, et al. 2011 Chromatin-modifying drugs induce miRNA-153 expression to suppress Irs-2 in glioblastoma cell lines. Int. J. Cancer 129 2527–2531

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Chen J and Chen N 2016 Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep. 6 22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LN, Zhang X, Xu F, s,, et al. 2020 Four-microRNA signature for detection of type 2 diabetes. World J. Clin. Cases 8 1923–1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hua QX, Liu J, et al. 2010 Solution structure of proinsulin: Connecting domain flexibility and prohormone processing. J. Biol. Chem. 285 7847–7851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin DD, Zhang EB, You LH, et al. 2015 Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells. Cell. Physiol. Biochem. 35 1892–1904

    Article  CAS  PubMed  Google Scholar 

  • You L, Wang N, Yin D, et al. 2016 Downregulation of long noncoding RNA Meg3 Affects insulin synthesis and secretion in mouse pancreatic beta cells. J. Cell. Physiol. 231 852–862

    Article  CAS  PubMed  Google Scholar 

  • Zampetaki A, Kiechl S, Drozdov I, et al. 2010 Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes. Circ. Res. 107 810–817

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW, Guo RW, Lv JL, et al. 2017 MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin. Biochem. Biophys. Res. Commun. 486 414–422

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang W, Zhu W, et al. 2019 Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 20

  • Zou G, Liu T, Guo L, et al. 2016 miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency. Gene 592 48–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujatha Sundaresan.

Additional information

Communicated by Ullas Kolthur-Seetharam.

Corresponding editor: Ullas Kolthur-Seetharam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonca, A., Thandapani, P., Nagarajan, P. et al. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 47, 58 (2022). https://doi.org/10.1007/s12038-022-00295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00295-2

Keywords

Navigation