Skip to main content
Log in

S-nitrosothiols signaling in cystic fibrosis airways

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

S-nitrosothiols (SNOs) are small naturally occurring thiol and nitric oxide adducts that participate in many cell signaling pathways in living organisms. SNOs receive widespread attention in cell biology, biochemistry and chemistry because they can donate nitric oxide and/or nitrosonium ions in S-nitrosylation reactions, which are comparable to phosphorylation, acetylation, glutathionylation, and palmitoylation reactions. SNOs have advantageous effects in respiratory diseases and other systems in the body. S-nitrosylation signaling is a metabolically regulated physiological process that leads to specific post-translational protein modifications. S-nitrosylation signaling is faulty in cystic fibrosis (CF) and many other lung diseases. CF is an inherited, lethal autosomal recessive multisystem disease resulting from mutations in the gene encoding the CF transmembrane conductance regulatory (CFTR) protein. F508del CFTR is the most common mutation associated with CF, which results in CFTR misfolding because a phenylalanine is deleted from the primary structure of CFTR. The majority of wild-type CFTR and almost all F508del is degraded before reaching the cell surface. Ultimately, CF researchers have been looking to correct the mutated CFTR protein in the CF patients. Remarkably, researchers have found that SNOs levels are low in the CF lower airway compared to non-CF patients. We have been interested in determining whether SNOs increase CFTR maturation through S-nitrosylation. Maturation of both wild type and mutant F508del CFTR increases SNOs, which up-regulate CFTR maturation. In this review, we summarized our current knowledge of S-nitrosothiols signaling in cystic fibrosis airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Accurso F, Moss R, Wilmott R, Anbar R, Schaberg A and Durhgenerates R 2011 Denufasol tetrasodium in patients with cystic fibrosis and normal to mildly impaired lung function. Am. J. Respir. Crit. Care Med. 183 627–634

    Article  CAS  PubMed  Google Scholar 

  • Accurso F, Rowe S, Clancy J, et al. 2010 Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N. Engl. J. Med 363 1991–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahner A, Zhang H, Frizzel R and Brodsky J 2005 A genomic yeast screen identifies small heat shock proteins as regulators of CFTR degradation. Am. J. Respir. Cell Mol. Biol. 23 175–181

    Google Scholar 

  • Amaral M 2004 CFTR and Chaperones. J. Mol. Neurosci. 23 41–47

    Article  CAS  PubMed  Google Scholar 

  • Amaral M 2005 Processing of CFTR traversing the cellular maze-how much CFTR needs to go through to avoid cystic fibrosis. Pediatric. Pulmonol. 39 479–491

    Article  Google Scholar 

  • Amaral M 2006 Therapy through chaperones: sense or antisense? Cystic fibrosis as a model disease. J. Inherit. Metab. Dis. 29 477–487

    Article  CAS  PubMed  Google Scholar 

  • Anderson D 1938 Cystic fibrosis of the pancreas and its relation to celiac disease: clinical and pathological study. Am. J. Dis. Child 56 344–399

    Article  Google Scholar 

  • Andersson C, Gaston B and Roomans G 2002 S-Nitrosoglutathione induces functional ΔF508 CFTR in cultured airway epithelial cells. Biochem. Biophys. Res. Comm. 297 552–557

    Article  CAS  PubMed  Google Scholar 

  • Andersson C and Roomans GM 2000 Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX. Eur. Respir. J. 15 937–941

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Chee C, Gaston B, Lilly C, Gerard C, Drazen J and Stamler J 1994 Constitutive and inducible nitric oxide synthase gene expression, regulation and activity in human lung epithelial cells. Proc. Natl. Acad. Sci. USA 91 10089–10093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askew S, Butler A, Flitney F, Kemp G and Megson I 1995 Chemical mechanisms underlying the vasodilator and platelet anti-aggregating properties of S-nitroso-N-acetyl-DL-penicillamine and S-nitrosoglutathione. Bioorganic. Med. Chem. 3 1–9

    Article  CAS  Google Scholar 

  • Ballinger C, Connell P, Wu Y, Hu Z, Thompson L, Yin L and Patterson C 1999 Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19 4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballmann M and Von der Hardt H 2002 Hypertonic saline and recombinant human DNase: a randomized cross-over pilot study in patients with cystic fibrosis. J. Cystic. Fibrosis 1 35–37

    Article  CAS  Google Scholar 

  • Bannenberg G, Xue J, Engman L, Cotgreave I, Moldéus P and Ryrfeldt A 1995 Characterization of bronchodilator effects and fate of S-nitrosothiols in the isolated perfused and ventilated guinea pig lung. J. Pharmacol. Exp. Therap. 272 1238–1245

    CAS  Google Scholar 

  • Barnett S and Buxton I 2017 The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit. Rev. Biochem. Mol. Biol 32 340–354

    Article  Google Scholar 

  • Basile A, Pascale M, Franceschelli S, Nieddu E, Fossa P, Turco M, Mazzei M and Matrine M 2012 Modulates Hsc70 levels and rescue F508del CFTR. J. Cell. Physiol. 227 3317–3323

    Article  CAS  PubMed  Google Scholar 

  • Bilton D, Robinson P, Cooper P, Gallagher C, Kolbe J, Fox H, Jaques A and Charlton B 2011 Inhaled dry powder mannitol in cystic fibrosis: an efficacy and safety study. Eur. Respir. J. 38 1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Boat T, Welsh M and Beaudet A 1989 The metabolic basis of inherited disease (McGraw-Hill, New York) pp. 2649–2680

  • Boucher R 2002 An overview of the pathogenesis of cystic fibrosis lung disease. Adv. Drug. Deliv. Rev. 4 1359–1371

    Article  Google Scholar 

  • Bradbury N 2000 Focus on sodium 4-phenylbutyrate downregulates Hsc70 implications for Intracellular trafficking of deltaF508 CFTR. Am. J. Physiol. Cell. Physiol. 278 C257–C258

    Article  CAS  PubMed  Google Scholar 

  • Braun J, Wilbanks S and Scheller R 1996 The cysteine string secretory vesicle protein activates Hsc70 ATPase. J. Biol. Chem. 271 25989–25993

    Article  CAS  PubMed  Google Scholar 

  • Brodsky J and Frizzell R 2015 A combination therapy for cystic fibrosis. Cell. 163 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrigan P, Riggs D, Chinkers M and Smith D 1998 Functional comparision of human and Drosophilia Hop reveals novel role in steroid receptor maturation. J. Biol. Chem. 280 8906–8911

    Article  Google Scholar 

  • Carrigan P, Sikkink L, Smith D and Ramirez-Alvardo, 2006 Domain: domain interactions with Hop the Hsp70/Hsp90 organizing protein are required for protein stability and structure. Protein Sci. 15 522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain L and Burgoyne R 2000 Cysteine-string protein: The chaperone at the synapse. J. Neurochem. 74 1781–1789

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain L and Burgoyne R 1997 Activation of the ATPase activity of heat-shock proteins Hsc70/Hsp70 by cysteine-string protein. Biochem. J. 322 853–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Sullivan W and Smith D 1998 Differential inter-actions of p23 and the TPR-containing proteins Hop, cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3 118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Patel P, Teng X, Bosworth C, Lancaster R and Matalon S 2006a Mechanisms of cystic fibrosis transmembrane conductance regulator activation by S-nitrosoglutathione. J. Biol. Chem. 281 9190–9199

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Patel P, Teng X, Bosworth C, Lancaster R and Matalon S 2006b Mechanism of chloride currents in human lung epithelial cells. Am. J. Physiol. 272 1098–1104

    Google Scholar 

  • Cholon M, Fulcher L, Randell S, Boucher R and Gentzsch M 2013 Potentiator ivacaftor impedes pharmacological correction of F508del-CFTR. Pediatr. Pulmonol. Suppl. 36 225

    Google Scholar 

  • Choo-Kang R and Zeitlin P 2001 Induction of Hsp70 promotes deltaF508 CFTR trafficking. Am. J. Physiol. Lung. Cell Biol. Physiol. 281 L58–L68

    Article  CAS  Google Scholar 

  • Clancy J, Rowe M, Accurso F, Ballmann M, Boyle P, DeBoeck C and Konstan M 2010 Spencer-Green, G. A phase II randomized placebo-controlled clinical trial of four doses of VX-809 in CF patients homozygous for the deltaF508 CFTR mutation. Pediatr. Pulmonol. 453 228

  • Collawn J, Bebok Z and Matalon S 2009 Search and Rescue: Finding ways to correct ΔF508 CFTR. Am. J. Respir. Cell. Mol. Biol. 40 385–387

    Article  CAS  PubMed  Google Scholar 

  • Collins F 1992 Cystic fibrosis: molecular biology and therapeutic implications. Science 256 774–779

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Wainwright C, Conny G, et al. 2013 Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am. J. REs. Crit. Care. Med. 187 1219–1225

    Article  Google Scholar 

  • Davis P and di Sant Agnese P 1984 Diagnosis and treatment of CF an update. Chest 85 802–809

    Article  CAS  PubMed  Google Scholar 

  • Davis P 2006 Cystic fibrosis since 1938. Am. J. Respir. Crit. Care. Med. 173 475–482

    Article  PubMed  Google Scholar 

  • Degroote M, Testerman T, Yisheng X, Stauffer G and Fang F 1996 Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella. typhimurium. Science 272 414–417

    Article  CAS  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE and Welsh MJ 1992 Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature sensitive. Nature 358 761–764

    Article  CAS  PubMed  Google Scholar 

  • di Sant Agnese P 1956 Fibrocystic disease of the pancreas: a generalized disease of exocrine glands. JAMA 160 846

    Article  Google Scholar 

  • Dragomir A, Bjorstad J, Hjelte L and Roomans G 2004 Curcumin does not stimulate cAMP mediated chloride transport in cystic fibrosis airway epithelial cells. Biochem. Biophys. Res. Commun 3222 447–451

    Article  Google Scholar 

  • Edelman A, Fritsch J and Ollero M 2011 Twenty years after cystic fibrosis gene identification: Where are we and what are we up to? Pathol. Biol. 59 131–133

    Article  CAS  PubMed  Google Scholar 

  • Egan M, Glockner-Pagel J, Ambrose C, Cahill P, et al. 2002 Calcium-pump inhibitors induce functional surface expression of ∆F508 CFTR protein in cystic fibrosis epithelial cells. Nat. Med. 8 485–492

    Article  CAS  PubMed  Google Scholar 

  • Egan M, Pearson M, Weiner S, et al. 2004 Curcumin: a major constituent of turmeric corrects cystic fibrosis defects. Science 304 600–602

    Article  CAS  PubMed  Google Scholar 

  • Fang K, Johns R, Macdonald T, Kinter M and Gaston B 2000 S-Nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig. Am. J. Physiol. Lung. Cell. Mol. Physiol. 279 716–721

    Article  Google Scholar 

  • Farinha C, Noguerira P, Mendes F, Penque D and Amaral M 2002 The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp)40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem. J. 366 797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flume P, Liou T, Borowitz D, et al. 2012 Ivacaftor in subjects with cystic fibrosis who are homogenous for the F508del-CFTR mutation. Chest 142 718–724

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaston B, Ratjen F, Vaughan J, Malhotra N, Canady R, Snyder A, Hunt J, Gaertig S and Goldberg J 2002 Nitrogen redox balance in the cystic fibrosis airway: Effects of anti-pseudomonal therapy. Am. J. Respir. Crit. Care Med. 165 387–390

    Article  PubMed  Google Scholar 

  • Gaston B, Reilly J, Drazen J, et al. 1993 Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc. Natl. Acad. Sci. USA 90 10957–10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaston B, Sears S, Woods J, Hunt J, Ponaman J, McMahon T and Stamler J 1998 Bronchodilator S-nitrosothiol deficiency in asthmatic respiratory failure. Lancet 351 1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Gaston B 1999 Nitric oxide and thiol groups. Biochim. Biophys. Acta 1411 323–333

    Article  CAS  PubMed  Google Scholar 

  • Gaston B, Doctor A, Singel D and Stamler J 2006 S-Nitrosothiol signaling in respiratory biology. Am. J. Respir. Crit. Care Med. 173 1186–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson R and Cooke R 1959 A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23 545–549

    Article  CAS  PubMed  Google Scholar 

  • Gibson R, Burns JL and Ramsey B 2003 Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med 168 918–951

    Article  PubMed  Google Scholar 

  • Grasemann H, Gaston B, Fang K, Paul K and Ratjen F 1999 Decreased levels of nitrosothiols in the lower airways of patients with cystic fibrosis and normal pulmonary function. J. Pediatr. 135 770–772

    Article  CAS  PubMed  Google Scholar 

  • Grasemann H, Stehling F, Brunar H, et al. 2007 Inhalation of Moli 1901 in patients with cystic fibrosis. Chest 131 1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Grove D, Rosser M, Ren H, Naren A and Cyr D 2009 Mechanisms for rescue of correctable folding defects in CFTR ΔF508. Mol. Biol. Cell 20 4059–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guggino W and Stanton B 2006 New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. (mol.cell. Biol.) 7 426–436

    Article  CAS  Google Scholar 

  • Heda G and Marino C 2000 Surface expression of the cystic fibrosis transmembrane conductance regulator mutant deltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature. Biochem. Biophys. Res. Commun. 271 659–664

    Article  CAS  PubMed  Google Scholar 

  • Hogg N, Singh R, Konorev E, Joseph J and Kalyanaraman B 1997 S-Nitrosoglutathione as a substrate for γ-glutamyl transpeptidase. Biochem. J. 323 477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Wei H, Rajagopalan C, Jiang H, Zaman K, Xie Y and Sun F 2018 Dissection of the role of VIMP in endoplasmic reticulum-associated degradation of CFTR ΔF508. Sci. Rep. 8 1–9

    Article  Google Scholar 

  • Hou X, Wu Q, Rajagopalan C, et al.2019 CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation. FASEB J. PMID:31450978

  • Howard M, Fischer H, Roux J, Santos B, Gullans S, Yancey P and Welch W 2003 Mammalian osmolytes and S-Nitrosoglutathione promote F508 CFTR protein maturation and function. J. Biol. Chem. 278 35159–35167

    Article  CAS  PubMed  Google Scholar 

  • Ihrig V and Obermann W 2017 Identifying inhibitors of the Hsp90-Aha protein complex, a potential target to drug cystic fibrosis. SLAS. Diccov. 22 923–928

    Article  CAS  Google Scholar 

  • Jain L, Brown L and Eaton D 1998 Nitric oxide inhibits lung sodium transport through a cGMP-mediated inhibition of epithelial cation channels. Am. J. Physiol. 274 475–484

    Google Scholar 

  • Jilling T, Haddad I, Cheng S and Matalon S 1999 Nitric oxide inhibits heterologous CFTR expression in polarized epithelial cells. Am. J. Physiol. 277 89–96

    Google Scholar 

  • Johnson M, Macdonald T, Mannick J, Conaway M and Gaston B 2001 Accelerated S-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper, zinc-superoxide dismutase. J. Biol. Chem. 276 39872–39878

    Article  CAS  PubMed  Google Scholar 

  • Kamosinska B, Radomski M, Duszyk M, Radomski A and Man S 1997 Nitric oxide activates chloride currents in human lung epithelial cells. Am. J. Physiol. 272 1098–1104

    Google Scholar 

  • Kelley T and Drumm M 1998 Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J. Clin. Invest. 102 1200–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleizen B, Braakman I and de Jonge H 2000 Regulated trafficking of the CFTR chloride channel. European J. Cell. Biol. 79 544–556

    Article  CAS  Google Scholar 

  • Knight J, Hussain F, Holloway K, Getsy P, Smith L, Raffay T, Sun F, Cotton C, Lewis S, Zaman K and Gaston B 2017 S-Nitrosothiols increase the cell surface maturation of CFTR in human airway epithelial cells: The role of molecular co-chaperone, C-terminus Hsc7-interacting protein. Pediatr. Pulmonol. Suppl. 52 222

    Google Scholar 

  • Knight J, Hussain F, Cao R, et al. 2018 Novel role of S-nitrosothiols and molecular co-chaperones CHIP and Aha1 in CFTR cell membrane stabilization in human airway epithelial cells. Pediatr. Pulmonol. Suppl. 53 155

    Google Scholar 

  • Knowles M, Gatzy J and Boucher R 1981 Increased bioelectrical potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305 148

    Article  Google Scholar 

  • Kopito R 1999 Biosynthesis and degradation of CFTR. Physiol. Rev. 79 S167–S172

    Article  CAS  PubMed  Google Scholar 

  • Lancaster J and Gaston B 2004 NO and nitrosothiols: spatial confinement and free diffusion. Am. J. Physiol. Lung Cell Mol. Physiol. 287 465–466

    Article  Google Scholar 

  • Linsdell P 2001 Direct block of the cystic fibrosis transmembrane conductance regulator Cl channel by butyrate and phenylbutyrate. Eur. J. Pharmacol 411 255–260

    Article  CAS  PubMed  Google Scholar 

  • Lipecka J, Norez C, Bensalem N, Baudouin-Legros M, Planelles G, Becq F, Edelman A and Davezac N 2006 Rescue of deltaF508 CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network. J. Pharmacol. Exp. Ther 317 500–505

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J and Stamler J 2001 A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410 490–496

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zaman R, Jafri A, et al. 2020 S-nitrosoglutathione stabilizes mature, cell surface CFTR through activator of the Hsp90 ATPase. Intl. J. Biochem. Physiol. 5 https://doi.org/10.23880/ghij-16000180

  • Lukacs G and Verkman A 2012 CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol. Med. 18 81–91

    Article  CAS  PubMed  Google Scholar 

  • Mannick J, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K and in Lung biology in health and disease.Gaston B, 2001 S-Nitrosylation of mitochondrial caspases. J. Cell. Biol. 154 1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marozkina N, Bosch J, Cotton C, et al. 2019 Cyclic compression increase F508del CFTR expression in ciliated human airway epithelium. Am. J. Physiol. Lung. Cell Mol. Physiol. 317 L247–L258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marozkina N, Yemen S, Borowitz M, et al. 2010 Hsp70/Hsp90 organizing protein as a nitrosylation target in cystic fibrosis. Proc. Natl. Acad. Sci. USA 107 11393–11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marozkina N and Gaston B 2012 S-nitrosylation signaling regulates cellular protein interactions. Biochim. Biophys. Acta 1820 722–729

    Article  CAS  PubMed  Google Scholar 

  • Marozkina N, Wei C, Yemen S, et al. 2012 S-nitrosoglutathione reductase in human lung cancer. Am. J. Respir. Cel Mol. Biol 46 63–70

    Article  CAS  Google Scholar 

  • Marshall H, Que L, Stamler J and Gaston B 2003 S-Nitrosothiols in lung inflammation. Therapeutic targets of airway inflammation; in Lung biology in health and disease (ed.) A. Eissa (New York; Marcel Dekker, Inc.) pp 123–134

  • Matsumoto A, Comatas K, Liu L and Stamler J 2003 Screening for nitric oxide-dependent protein-protein interactions. Science 301 657–661

    Article  CAS  PubMed  Google Scholar 

  • Mazzei M 2012 Matrine modulates Hsc70 levels and rescue ∆F508 CFTR. J. Cell. Physiol. 227 3317–3323

    Article  PubMed  Google Scholar 

  • Meacham G, Patterson C, Zhang W, Younger J and Cyr D 2001 The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3 100–105

    Article  CAS  PubMed  Google Scholar 

  • Morris S, Walsh R and Hansen J 1984 Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem. 259 13590–13594

    Article  CAS  PubMed  Google Scholar 

  • Nikitovic D and Holmgren A 1996 S-Nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem. 271 19180–19185

    Article  CAS  PubMed  Google Scholar 

  • Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, Young JC and Lukacs GL 2010 Poripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329 805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong T and Ramsey B 2013 Modifying disease in cystic fibrosis: Current and future therapies on the horizon. Pulm. Med. 19 645–651

    CAS  Google Scholar 

  • Palmer L, Doctor A, Chhabra P, Laubach V, Karlinsey M, Forbes M, Macdonald T and Gaston B 2007 S-Nitrosothiols signal hypoxia-mimetic vascular pathology. J. Clin. Invest. 117 2592–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedemonte N, Lukacs G, Du K, et al. 2005 Small-molecule correctors of defective ∆F508 CFTR cellular processing identified by high throughput screening. J. Clin. Invest. 115 2564–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins W, Pabelick C, Warner D and Jones K 1998 cGMP-independent mechanism of airway smooth muscle relaxation induced by S-nitrosoglutathione. Am. J. Physiol. 275 468–474

    Article  Google Scholar 

  • Persichini T, Colasanti M, Gauro G and Ascenzi P 1998 Cysteine nitrosylation inactivates the HIV-1 protease. Biochem. Biophys. Res. Commun. 250 575–576

    Article  CAS  PubMed  Google Scholar 

  • Que L, Liu L, Whitehead G, Gavett S, Schwartz D and Stamler J 2005 Protection from experimental asthma by an endogenous bronchodilator. Science 308 1618–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinton P 1983 Chloride impermeability in cystic fibrosis. Nature 301 421–422

    Article  CAS  PubMed  Google Scholar 

  • Quinton P 1999 Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev. 79 S3–S22

    Article  CAS  PubMed  Google Scholar 

  • Ratjen F 2006 Restoring airway surface liquid in cystic fibrosis. N. Engl. J. Med 354 291–293

    Article  CAS  PubMed  Google Scholar 

  • Ratjen F 2009 Cystic Fibrosis: Pathogenesis and future treatment stratergies. Resp. Care 54 595–605

    Article  Google Scholar 

  • Rich D, Couture L, Cardoza L, et al. 1993 Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis. Human Gene. Ther. 4 461–474

    Article  CAS  Google Scholar 

  • Riordan J, Rommena J, Kerem B, et al. 1989 Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245 1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Riordan J 1999 Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am. J. Genet 64 1499–1504

    CAS  Google Scholar 

  • Riordan J 2005 Assembly of functional CFTR chloride channels. Annu. Rev. Physiol. 67 701–718

    Article  CAS  PubMed  Google Scholar 

  • Riordan J 2008 CFTR function and prospects for therapy. Annu. Rev. Biochem. 77 701–726

    Article  CAS  PubMed  Google Scholar 

  • Rommens J, Iannuzzi M, Kerem B, et al. 1989 Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245 1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Rosser M, Grove D, Chen L and Cyr D 2008 Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD)1 and MSD2. Mol. Biol. Cell 1911 4570–4579

    Article  Google Scholar 

  • Rowe S, Miller S and Sorscher E 2005 Mechanisms of disease: Cystic fibrosis. N. Engl. J. Med. 352 1992–2001

    Article  CAS  PubMed  Google Scholar 

  • Rowe S and Verkman A 2017 Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb. Presp. Med. 3 1–15

    Google Scholar 

  • Rubenstein R, Egan M and Zeitlin P 1997 In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J. Clin. Invest. 100 2457–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein R and Zeitlin P 2000 Sodium 4-phenybutyrate downregulates Hsc 70: Implications for intracellular trafficking of deltaF508 CFTR. Am. J. Physiol. Cell Physiol. 278 C259–C267

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein R and Zeitlin P 1998 A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508 CFTR homozygous cystic fibrosis patients: Partial restoration of nasal epithelial CFTR function. Am. J. Respir. Crit. Care. Med. 157 484–490

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein R and Lyons B 2001 Sodium 4-phenylbutyrate downregulates Hsc70 expression by facilitating mRNA degradation. Am. J. Physiol. Lung. Cell Mol. Physiol. 281 L43–L51

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ward C, Krouse M and Kopito R 1996 Glycerol reverses the misfolding phenotype of the most common cystic fibrosis maturation. J. Biol. Chem. 271 635–638

    Article  CAS  PubMed  Google Scholar 

  • Saura M, Zaragoza C, Quick R, Hohenadl C, Lowenstein J and Lowenstein C 1999 An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10 21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawczak V, Getsy P, Zaidi A, Sun F, Zaman K and Gaston B 2015 Novel approaches for potential therapy of cystic fibrosis. Current. Drug. Targets. 16 923–936

    Article  CAS  PubMed  Google Scholar 

  • Servetnyk Z, Krujkova J, Gaston B, Zaman K, Hjelte L, Roomans G and Dragomir A 2006 Activation of delF508 CFTR in CF airway epithelial cell lines and CF nasal epithelial cells by S-nitrosoglutathione. Respir. Res. 7 124–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth D and Stamler J 2011 The SNO-proteome: Causation and classifications. Curr. Opin. Chem. Biol. 15 129–136

    Article  CAS  PubMed  Google Scholar 

  • Sik M 2018 Pathophysiological role of S-nitrosylation and transnitrosylation depending on S-nitrosoglutathione levels regulated by GSNO reductase. Biomol. Ther. 26 533–538

    Article  Google Scholar 

  • Skach W 2000 Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Kidney Int. 57 825–831

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Karp P and Welsh M 1994 Defective fluid transport by cystic fibrosis airway epithelia. J. Clin. Invest. 93 1307–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, McPherson M, Hunt J, Stamler J and Gaston B 2002 Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am. J. Respir. Crit. Care. Med. 165 1–5

    Article  Google Scholar 

  • Stamler J, Toone E, Lipton S and Sucher N 1997 SNO signals: translocation, regulation, and a consensus motif. Neuron 18 691–696

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Mi Z, Condliffe S, et al. 2008 Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia. FASEB J. 22 3255–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui L and Durie P 1997 Genotype and phenotype in cystic fibrosis. Hosp. Pract. 32 115–134

    Article  CAS  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis P, et al. 2009a Rescue of a CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106 18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis P, et al. 2011 Correction of the F508-CFTR protein processing defect in vitro by the investigational drug VX 809. Proc. Natl. Acad. Sci. USA 108 18843–18848

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S and Grootenhuls P 2009b VX-809 a CFTR corrector, increase the cell surface density of functional deltaF508 CFTR in pre-clinical models of cystic fibrosis. Pediatr. Pulmonol 442 154–155

    Google Scholar 

  • Van Goor F, Yu H, Burton B and Hoffman B 2014 Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J. Cyst. Fibrosis. 13 29–36

    Article  Google Scholar 

  • Varga K, Goldstein R, Jurkuvena A, et al. 2008 Molecular strategies for therapy of cystic fibrosis. Ann. Rev. Pharmacol. Toxicol 35 257–276

    Google Scholar 

  • Wang Y, Loo T, Bartlett M and Clarke D 2007 Correctors promote maturation of cystic fibrosis transmembrane conductance regulator processing mutants by binding to the protein. J. Biol. Chem. 16 33247–33251

    Article  Google Scholar 

  • Wang X, Venable J, LaPointe P, et al. 2006 Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127 803–815

    Article  CAS  PubMed  Google Scholar 

  • Ward C and Kopito R 1994 Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269 25710–25718

    Article  CAS  PubMed  Google Scholar 

  • Ward C, Omura S and Kopito R 1995 Degradation of CFTR by the ubiquitin proteasome pathway. Cell 83 121–127

    Article  CAS  PubMed  Google Scholar 

  • Welch W and Brown C 1996 Influence of molecular and chemical chaperones on protein folding. Cell. Stress. Chaperones 1 117–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y and Loscalzo J 2005 S-nitrosoprotein formation and localization in endothelial cells. Proc. Natl. Acad. Sci. USA 102 117–122

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Needham P, Estabrooks S, Whitaker S, Garcia B, Misra S, Brodsky J and Camacho C 2017 Symmetry breaking during homodimeric assembly activates an E3 ubiquitin ligase. Sci. Rep. 7 1789–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Younger J, Ren H, Chen L, Fan C, Fields A, Patterson C and Cyr D 2004 A foldable CFTR ΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J. Cell. Biol. 167 1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman K, Bennett D, Butler M, et al. 2014 S-nitrosoglutathione diethyl ester increases cystic fibrosis Transmembrane regulator expression and maturation in the cell surface. Biochem. Biophys. Res Commun. 443 262

    Google Scholar 

  • Zaman K, Carraro S, Doherty J, et al. 2006 A novel class of compounds that increase CFTR expression and maturation in epithelial cells. Mol. Pharmacol. 70 1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Zaman K, McPherson M, Vaughan J, Hunt J, Mendes F, Gaston B and Palmer LA 2001 S-Nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochem. Biophys. Res. Commun. 284 65–70

    Article  CAS  PubMed  Google Scholar 

  • Zaman K, Palmer LA, Doctor A, Hunt J and Gaston B 2004 Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. Biochem. J. 380 67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman K, Sawczak V, Zaidi A, et al. 2016 Augmentation of CFTR maturation by S-nitrosoglutathione reductase in epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 310 L263–L270

    Article  PubMed  Google Scholar 

  • Zaman K, Knight J, Hussain F, et al. 2020 CFTR maturation augmented by S-nitrosothiols involves CHIP. Am. J. Resp. Cell. Mol. Biol. 61 765–775

    Article  Google Scholar 

  • Zeitlin P, Boyle M and Guggino W 2005 A phase I trial intranasal Moli 1901 for cystic fibrosis. Chest. 25 143–149

    Google Scholar 

  • Zeitlin P, Diener-West M, Rubenstein RC, Boyle MP, Lee C and Brass-Ernst L 2002 Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol. Ther 6 119–126

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin P 2000 Pharmacologic restoration on deltaF508 CFTR mediatred chloride current. Kidney. Intl. 57 832–837

    Article  CAS  Google Scholar 

  • Zhang H, Schmidt B, Sun F, Condliffe S, Butterworth M, Youker R, Brodsky J, Aridor M and Frizzell R 2005 Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator giogenesis. J. Biol. Chem. 281 11312–11321

    Article  Google Scholar 

  • Zhang W, Zhang X, Zhang Y, Stokes D and Naren A 2016 Lumacaftor/Ivacafactor combination for cystic fibrosis patientshomozygous for Phe508del CFTR. Drugs Today 52 1–10

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Cystic Fibrosis Foundation (Zaman 04GO) and National Institute of Health (1POHL101871-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Max Liu or Khalequz Zaman.

Additional information

Corresponding editor: BJ RAO.

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zaman, R., Sawczak, V. et al. S-nitrosothiols signaling in cystic fibrosis airways. J Biosci 46, 111 (2021). https://doi.org/10.1007/s12038-021-00223-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00223-w

Keywords

Navigation