Skip to main content
Log in

Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the devastating diseases of rice worldwide. The pathogen reported to cause 70% crop loss in some of the susceptible genotypes under disease favoring environments, viz., temperature ranging between 25 to 34°C and relative humidity more than 70%. In Xoo, about 245 genes govern the pathogenicity and host specificity. The hypersensitive response and pathogenicity (hrp) genes responsible for disease occurrence were clustered in the pathogenicity island of 31.3 Kb. The protein secreted through type three secretory system and type one secretory system mediates infection and establishment of the pathogen inside the host. However, elicitor molecules from Xoo triggered the resistant response in rice against the pathogen. An array of resistant genes (R genes) was known to be invoked by the host to combat the bacterial infection. To date, of the 45 Xa genes in rice, nine were cloned and characterized. The evolution of new races has made the task of developing resistant rice genotypes more challenging as it demands a comprehensive breeding strategy involving the best use of R genes from the existing gene pool. Thus, to combat the infection from the existing races and to slow down the emergence of new Xoo races, pyramiding two or more R genes was found to be effective against bacterial blight disease. In India, the successfully commercialized example includes the development of rice genotypes, viz., Improved Pusa Basmati-1, Improved Samba Mahsuri, PR106, Type 3 Basmati, and Mahsuri with selected R genes, viz., xa5, Xa4, xa13 and Xa21 against bacterial blight resistance. This review primarily portray Xoo-rice interactions and provides opportunities for its effective management through sustainable technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Source: CABI compendium records (CABI 2020).

Figure 2

Similar content being viewed by others

Abbreviations

avr :

avirulence

EBE:

effector binding elements

ETI:

effector-triggered immunity

hrp :

hypersensitive response and pathogenicity

LRR-RLK:

leucine-rich repeat receptor-like kinase

MAMP:

microbe-associated molecular patterns

NBS-LRR:

nucleotide binding site leucine-rich repeat

OryR :

orphan receptor

OsSWEET :

Oryza sativa sugar will eventually be exported transporter gene

PAMP:

pathogen associated molecular patterns

PIP:

plant inducible promoter

PTI:

PAMP triggered immunity

R genes:

resistance genes

RTX:

repeats in toxin

S genes:

susceptible genes

T3E:

type-three effectors

T3SS:

type-three secretory system

TAL:

transcription activator-like

UPTAvrXa27 :

up-regulated by transcription activator-like effector of AvrXa27

Xoo :

Xanthomonas oryzae pv. oryzae

Xop :

Xanthomonas outer protein

References

  • Adhikari TB, Basnyat RC and Mew TW 1999 Virulence of Xanthomonas oryzae pv. oryzae on rice lines containing single resistance genes and gene combinations. Plant Dis. 83 465

  • Albert M 2013 Peptides as triggers of plant defence. J. Exp. Bot. 64 5269–5279

    CAS  PubMed  Google Scholar 

  • An SQ, Potnis N, Dow M, Vorholter FJ, He YQ, Becker A, Teper D, Li Y, et al. 2020 Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen. Xanthomonas FEMS Microbiol. Rev. 44 024

    Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F and Yang B 2010 Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22 3864–3876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aparna G, Chatterjee A, Sonti RV and Sankaranarayana R 2009 A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice. Plant Cell 21 18601–18873

    Google Scholar 

  • Arshad HMI, Naureen S, Saleem K, Ali S, Jabeen T, Babar MM 2015 Morphological and biochemical characterization of Xanthomonas oryzae pv. oryzae isolates collected from Punjab during 2013. Adv. Life Sci. 3 125–130

    Google Scholar 

  • Awoderu VA, Bangura N and John VT 1991 Incidence, distribution and severity of bacterial diseases on rice in West Africa. Trop. Pest Manag. 37 113–117

    Google Scholar 

  • Balachiranjeevi CH, Naik BS, Kumar VA, Harika G, Swamy HKM, Hajira SK, Kumar TD, Anila M, et al. 2018 Marker-assisted pyramiding of two major, broad-spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice, DRR17B. PLoS ONE 13 e0201271

    Google Scholar 

  • Basavaraj SH, Singh VK, Singh A, Singh A, Singh A, et al. 2010 Marker assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol. Breed. 26 293–305

    CAS  Google Scholar 

  • Bharani M, Nagarajan P, Rabindran R, Saraswathi R, Balasubramanian P and Ramalingam J 2010 Bacterial leaf blight resistance genes (Xa21, xa13 and xa5) pyramiding through molecular marker assisted selection into rice cultivars. Arch. Phytopathol. Plant Prot. 43 1032–1043

    CAS  Google Scholar 

  • Blanvillain-Baufume S, Reschke M, Sole M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, et al. 2017 Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 15 306–317

    CAS  PubMed  Google Scholar 

  • Boch J, Bonas U and Lahaye T 2014 TAL effectors-pathogen strategies and plant resistance engineering. New Phytol. 204 823–832

    CAS  PubMed  Google Scholar 

  • CABI 2020 https://www.cabi.org/isc/datasheet/56956#toDistributionMaps Accessed 12 March 2020

  • Carpenter SCD, Mishra P, Ghoshal C, Dash PK, Wang L, Midha S, Laha GS, Lore JS, et al. 2018 A strain of an emerging Indian Xanthomonas oryzae pv. oryzae pathotype defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET Gene and is nearly identical to a recent Thai isolate. Front. Microbiol. 9 2703

    PubMed  PubMed Central  Google Scholar 

  • Cerutti A, Jauneau A, Auriac M-C, Lauber E, Martinez Y, Chiarenza S, Leonhardt N, Berthome R and Noel LD 2017 Immunity at cauliflower hydathodes controls systemic infection by Xanthomonas campestris pv campestris. Plant Physiol. 174 700–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S and Sonti RV 2002 rpF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol. Plant Microbe Interact. 15 4634–4671

    Google Scholar 

  • Chaudhary SU, Iqbal J and Hussain M 2012 Effectiveness of different fungicides and antibiotics against bacterial leaf blight in rice. J. Agric. Res. 50 109–117

    Google Scholar 

  • Chen L, Hou B, Lalonde S, Takanaga H, Hartung ML, Qu X, Guo W, Kim J, et al. 2010 Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468 527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR and Frommer WB 2012 Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335 207–211

    CAS  PubMed  Google Scholar 

  • Chithrameenal K, Alagarasan G, Raveendran M, Robin S, Meena S, Ramanathan A and Ramalingam J 2018 Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes having bacterial blight and blast resistance. PLOS One 13 0204144

    Google Scholar 

  • Choi MS, Kim W, Lee C and Oh CS 2013 Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol. Plant Microbe Interact. 26 1115–1122

    CAS  PubMed  Google Scholar 

  • Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, Magaji UG, Akos I and Olalekan KK 2019 Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Mol. Biol. Rep. 46 1519

    CAS  PubMed  Google Scholar 

  • Das A, Rangaraj N and Sonti RV 2009 Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol. Plant Microbe Interact. 22 73–85

    CAS  PubMed  Google Scholar 

  • Dath AP and Deevadath S 1983 Role of inoculums in irrigation water and soil in the incidence of bacterial blight of rice. India Phytopathol. 36 1421–1444

    Google Scholar 

  • Deb S, Ghosh P, Patel HK and Sonti RV 2020 Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses. Plant J. https://doi.org/10.1111/tpj.14924. [Epub ahead of print]

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin I, Qu XQ, Bruan DM and Frommer WB 2015 SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 25 53–62

    CAS  PubMed  Google Scholar 

  • Eom JS, Luo D, Atienza-Grande G, Yang J, Ji C, Luu VT, Huguet-Tapia JC, Char SN, et al. 2019 Diagnostic kit for rice blight resistance. Nat. Biotechnol. 37 1372–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization of United Nations, Agriculture data (FAO) 2017 http://www.fao.org/statistics/

  • Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H and Tsuge S 2009 Identification of novel type III secretion effectors in Xanthomonas oryzae pv.oryzae. Mol. Plant Microbe Interact. 22 961–1006

    Google Scholar 

  • Gao L, Fang Z, Zhou J, Li L, Lu L, Li L, Li T, Chen L, et al. 2018 Transcriptional insights into the pyramided resistance to rice bacterial blight Sci. Rep. 8 12358

    Google Scholar 

  • Gautam RK, Singh PK, Sakthivel K, Srikumar M, Kumar N, Kumar K, Singh AK and Roy SD 2014 Analysis of pathogenic diversity of the rice bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) in the Andaman islands and identification of effective resistance genes. J. Phytopathol. 163 423–432

    Google Scholar 

  • Ghasemie E, Kazempour MN and Padasht F 2008 Isolation and identification of Xanthomonas oryzae pv. oryzae the causal agent of bacterial blight of rice in Iran. J. Plant Prot. Res. 48 53–62

    CAS  Google Scholar 

  • Gnanamanickam SS, Brindha Priyadarasani V, Narayanan NN, Vasudevan P and Kavitha 1999 An overview of bacterial blight disease of rice and strategies for management. Curr. Sci. 77 14351–14444

    Google Scholar 

  • Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, et al. 2005 R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435 1122–1125

    CAS  PubMed  Google Scholar 

  • Gupta MK, Nathawat R, Sinha D, Haque AS, Sankaranarayanan R and Sonti RV 2015 Mutations in the predicted active site of Xanthomonas oryzae pv. oryzae XopQ differentially affect virulence, suppression of host innate immunity, and induction of the HR in a non-host Plant. Mol. Plant Microbe Interact. 28 195–206

    PubMed  Google Scholar 

  • Hong Y, Yang Y, Zhang H, Huang L, Li D and Song F 2017 Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Sci. Rep. 7 41037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YC, Chiu CH, Yap R, Tseng YC and Wu YP 2020 Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. Int. J. Mol. Sci. 21 1281

    CAS  PubMed Central  Google Scholar 

  • Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, et al. 2017 Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 3 17009

    CAS  PubMed  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Mag Pantay G, Singh S, Zhang G, Kumaradivel N, Bennett J and Khush GS 1997 Pyramiding of bacterial blight resistant genes in rice: Marker assisted selection using RFLP and PLR. Theor. Appl. Ganet. 95 313–320

    CAS  Google Scholar 

  • Hutin M, Sabot F, Ghesquière A, Koebnik R and Szurek B 2015 A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 84 694–703

    CAS  PubMed  Google Scholar 

  • Indiastat 2019 http://www.indiastat.com Accessed 12 February 2019

  • Ishiyama S 1922 Studies on the white leaf disease of rice plants. Rep. Agric. Expt. Sin. Tokyo. 45 2332–2351

    Google Scholar 

  • Jabeen R, Iftikhar T and Batoo H 2012 Isolation, characterization, preservation and pathogenicity test of Xanthomonas oryzae pv. oryzae causing BLB disease in rice. Pak. J. Bot. 44 2612–2665

    Google Scholar 

  • Jha G and Sonti RV 2009 Attack and defense in Xanthomonas-Rice interactions. Proc. Indian Natn. Sci. Acad. 75 496–498

    Google Scholar 

  • Jha G, Rajeshwari R and Sonti RV 2005 Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol. Plant Microbe Interact. 18 8918–8998

    Google Scholar 

  • Jha G, Rajeshwari R and Sonti RV 2007 Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant Microbe Interact. 20 31–40

    CAS  PubMed  Google Scholar 

  • Ji Z, Ji C, Liu B, Zou L, Chen G and Yang B 2016 Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat. Commun. 7 13435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX and Zhu LH 2006 Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol. Gen. Genomics 275 354–366

    CAS  Google Scholar 

  • Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X and Peng J 2020 Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—an Updated Review. Rice 13 11–12

    Google Scholar 

  • Jiang Y, Chen X, Ding X, Wang Y, Chen Q and Song WY 2013 The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J. 73 814–823

    CAS  PubMed  Google Scholar 

  • Kearney B and Staskawicz BJ 1990 Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346 385–386

    CAS  PubMed  Google Scholar 

  • Kesh H and Kaushik P 2020 Impact of marker assisted breeding for bacterial blight resistance in rice: A review. Plant Pathol. J. 19 1511–1565

    Google Scholar 

  • Khan MA, Naeem M and Iqbal M 2014 Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.) current status and future directions Eur. J. Plant Pathol. 139 273–277

    Google Scholar 

  • Kim SM and Reinke RF 2019 A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE 14 e0211775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kini K, Agnimonhan R, Afolabi O, Soglonou B, Silue D and Koebnik R 2017 First report of a new bacterial leaf blight of rice caused by Pantoea ananatis and Pantoea stewartii in Benin. Plant Dis. 101 2422–2442

    Google Scholar 

  • Kumar-Verma R, Samal B and Chatterjee S. 2018 Xanthomonas oryzae pv. oryzae Chemotaxis components and chemoreceptor Mcp2 are involved in the sensing of constituents of xylem sap and contribute to the regulation of virulence-associated functions and entry into rice. Mol. Plant Pathol. 19 2397–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laha GS, Sundaram RM, Yugander A, Singh K, Ladhalakshmi D, Hajira SK, Sheshu Madhav M., Srinivas Prasad M and Ravindra Babu V 2014 Virulence analysis of Xanthomonas oryzae pv. oryzae isolates and identification of new sources of resistance to bacterial blight of rice in India, in Proceedings of the Emerging Challenges and Opportunities in Biotic and Abiotic Stress Management National conference, Hyderabad, India. p 229

  • Leach JE, Vera Cruz CM, Bai J and Leung H 2001 Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39 187–224

    CAS  PubMed  Google Scholar 

  • Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, et al. 2005 Genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nuclei Acids Res. 33 577–586

    CAS  Google Scholar 

  • Lee SE, Gupta R, Jayaramaiah RH, Lee SH, Wang Y, Park SR and Kim ST 2017 Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions. Plant Pathol. J. 33 458–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS and Ronald PC 2009 A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326 850–853

    CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP and Yang B 2012 High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30 390–392

    CAS  PubMed  Google Scholar 

  • Li, L., Li, J., Zhang, Y. and Wang, N 2019 Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics 20 55

    PubMed  PubMed Central  Google Scholar 

  • Lifen G, Yinghao C, Zhihui X, Guanghuai J, Guozhen L, Weixiong ZH and Wenxue ZH 2013 Do transgenesis and marker assisted backcross breeding produce substantially equivalent plants? -A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genomics 14 738

    Google Scholar 

  • Liu F, Zhang W, Schwessinger B, Wei T, Ruan D and Ronald P 2020 The Rice Xa3 Gene Confers Resistance to Xanthomonas oryzae pv. oryzae in the Model Rice Kitaake Genetic Background. Front. Plant Sci. 11 49

  • Liu Y, Cao Y, Zhang Q, Li X and Wang S 2018 A cytosolic triosephosphate isomerase is a key component in XA3/XA26-mediated resistance. Plant Physiol. 178 923–935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luan ZH and Zhou DW 2015 Screening of rice (Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. Genet. Mol. Res. 14 1868–1874

    CAS  PubMed  Google Scholar 

  • Luu DD, Joe A, Chen Y, Parys K, Bahar O, Pruitt R, Chan LJG, Petzold CJ, et al. 2019 Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. Proc. Natl. Acad. Sci. USA 116 85258–85534

    Google Scholar 

  • Malik NAA, Kumar IS and Nadarajah K 2020 Elicitor and receptor molecules: Orchestrators of plant defense and immunity. Int. J. Mol. Sci. 21 963

    PubMed Central  Google Scholar 

  • Malik R 2013 Marker Assisted Selection for Introgression of Bacterial Blight (BB) Resistance Genes in Rice (Oryza Sativa L.), PhD thesis, Chaudhary Charan Singh Haryana Agricultural University, Haryana

  • Malukani KK, Ranjan A, Jyothi HS and Sonti RV 2019 The dual function receptor kinase, OsWAKL21.2, is involved in elaboration of lipaseA/esterase induced immune responses in rice. bioRxiv 754234 https://doi.org/10.1101/754234 [Preprint]

  • Mew TW, Vera Cruz CM and Medalla ES 1992 Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis. 76 1029–1032

    Google Scholar 

  • Midha S, Bansal K, Kumar S, Girija AM, Mishra D, Brahma K, Laha GS, Sundaram RM, et al. 2017 Population genomic insights into variation and evolution of Xanthomonas oryzae pv. oryzae. Sci. Rep. 7 40694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohiuddin MS, Rao YP, Mohan SK and Verma JP 1976 Role of Leptocorisa Acuta Thun. In: The spread of bacterial blight of rice. Curr. Sci. 45 4264–4227

  • Mondal KK, Meena BR, Junaid A, Verma G, Mani C, Majumdar D, Khicher M, Kumar S and Banik S 2014 Pathotyping and genetic screening of type III effectors in Indian strains of Xanthomonas oryzae pv. oryzae causing bacterial leaf blight of rice. Physiol. Mol. Plant Pathol. 86 98–106

    CAS  Google Scholar 

  • Naqvi SAH 2019 Bacterial leaf blight of rice: An overview of epidemiology and management with special reference to Indian sub-continent. Pak. J. Agric. Res. 32 359–380

    Google Scholar 

  • Nino-Liu DO, Pamela CR and Adam JB 2006 Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7 303–324

    CAS  PubMed  Google Scholar 

  • Noda T, Saito Z, Iwasaki S and Ohuchi A 1989 Isolation and structural elucidation of phytotoxic substances produced by Xanthomonas campestris pv. oryzae. Bull. Hokuriku Natl Agric. Exp. Stn. 30 105–129

    Google Scholar 

  • Oliva R, Ji C, Atienza-Grande1 G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li C, et al. 2019 Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37 1344–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE and Ronald PC 2008 Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol. 6 1910–1926

    CAS  Google Scholar 

  • Patil PB, Bogdanove AJ and Sonti RV 2007 The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in Xanthomonads that infect rice, citrus and crucifers. BMC Evol. Biol. 7 243

    PubMed  PubMed Central  Google Scholar 

  • Perumalsamy S, Bharani M, Sudha P, Nagarajan P, Arul L, Saraswathi R, Balasubramanian P and Ramalingam J 2010 Functional markers assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breeding 129 4004–4006

    Google Scholar 

  • Praveen NM, Monisha S and Ramanathan S 2019 Studies on interaction of rice and bacterial leaf blight causing Xanthomonas oryzae pv. oryzae. Biosci. Biotech. Res. Comm. 12 4464–4455

  • Rai B 2007 Oriental Survey Report. AICRP 606–2

  • Raina M, Salgotra RM, Pandotra P, Rathour R and Singh K 2019 Genetic enhancement for semi-dwarf and bacterial blight resistance with enhanced grain quality characteristics in traditional Basmati rice through marker-assisted selection. C. R. Biologies 342 142–153

    PubMed  Google Scholar 

  • Rajeshwari R, Jha G and Sonti RV 2005 Role of an in planta-expressed xylanase of Xanthomonas oryzae pv. oryzae in promoting virulence on rice. Mol. Plant Microbe Interact. 18 8308–8337

    Google Scholar 

  • Rajpurohit D, Kumar R, Kumar M, Paul P, Awasthi AA, Basha PO, Puri A, Jhang T, et al. 2010 Pyramiding of two bacterial blight resistance and a semi dwarfing gene in Type 3 Basmati using marker-assisted selection. Euphytica 178 111–126

    Google Scholar 

  • Ramalingam J, Savitha P, Alagarasan G, Saraswathy R and Chandrababu R 2017 Functional marker assisted improvement of stable cytoplasmic male sterile lines of rice for bacterial blight resistance. Frontiers in Plant Science. 8 1131

    PubMed  PubMed Central  Google Scholar 

  • Rao KK, Lakshminarasu M and Jena KK 2002 DNA markers and marker-assisted breeding for durable resistance to bacterial blight disease in rice. Biotechnol. Adv. 20 33–47

    CAS  PubMed  Google Scholar 

  • Rao SR, Priyanka M, Kumar MA, Ramanaiah C, Yashwanth B, Mohan KM, Chandra BV, Venkateshwarlu V, et al. 2017 Marker-assisted breeding for bacterial blight resistance in parental lines of hybrid rice. J. Plant Pathol. 99 691–701

    Google Scholar 

  • Ray SK, Rajeshwari R and Sonti RV 2000 Mutants of Xanthomonas oryzae deficient in general secretory pathway are virulent deficient and unable to secrete xylanase. Mol. Plant Microbe Interact. 13 394–401

    CAS  PubMed  Google Scholar 

  • Ray SK, Rajeshwari R, Sharma Y and Sonti RV 2002 A highmolecular-weight outer membrane protein of Xanthomonasoryzae pv. oryzae exhibits similarity to non-fimbrial adhesions of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol 46 637–647

    CAS  PubMed  Google Scholar 

  • Reddy PR 1983 Evidence for seed transmission of Xanthomonas campestris pv. oryzae. Curr. Sci. 52 265

  • Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, Wang S and, Lahaye T 2010 Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 187 1048–1057

    PubMed  Google Scholar 

  • Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ and Dow JM 2011 Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9 3443–55

    Google Scholar 

  • Saha S, Garg R, Biswas A and Rai A 2015 Bacterial diseases of rice : An overview. J Pure Appl Microbiol. 9 725–736

    Google Scholar 

  • Sakthivel K, Gautam RK, Manigundan K, Singh R, Ramalingam J, Laha GS, Kumar A and Velazhahan R 2017 The host background of rice influences the resistance expression of a three gene pyramid (xa5+xa13+Xa21) to bacterial blight (Xanthomonas oryzae pv. oryzae) pathotypes of Indian mainland and Bay islands. Plant Breeding 136 357–364

    CAS  Google Scholar 

  • Sere Y, Onasanya A, Verdier V, Akatar K, Oyedraogo LS, Segda Z, Mbare MM, Sido AY and Basso A 2005 Rice bacterial leaf blight in West Africa: Preliminary studies on disease in farmers fields and screening released varieties for resistance to the bacteria. Asian J. Plant Sci. 4 5775–5777

    Google Scholar 

  • Shaheen R, Sharif MZ, Amrao L, Zheng A, Manzoor M, Majeed D, Kiran H, Jafir M and Ali A 2019 Investigation of bacterial leaf blight of rice through various detection tools and its impact on crop yield in Punjab, Pakistan. Pak. J. Bot. 51 16

    Google Scholar 

  • Sharma P, Bora LC, Puzari KC, Baruah AM, Baruah R, Talukdar K, Kataky L and Phukan A 2017 Review on Bacterial Blight of Rice Caused by Xanthomonas oryzae pv. oryzae: Different Management Approaches and Role of Pseudomonas fluorescens As A Potential Biocontrol Agent. Int. J. Curr. Microbiol. App. Sci 6 982–1005

    CAS  Google Scholar 

  • Shen Y and Ronald P 2002 Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microb. Infect. 4 1361–1367

    CAS  Google Scholar 

  • Singh AK, Dharmraj E, Nayak R, Singh PK and Singh NK 2015 Identification of bacterial leaf blight resistance genes in wild rice of eastern India. Turk. J. Bot. 39 1060–1066

    CAS  Google Scholar 

  • Singh AK, Gopala Krishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK, Sharma T, Nagarajan M, et al. 2011 Marker assisted selection: a paradigm shift in Basmati breeding. Indian J. Genet. Plant Breed. 71 1–9

    Google Scholar 

  • Singh AK, Sarma BK, Singh PK and Nandan R 2013 Screening of rice (Oryza sativa L.) germplasms against Xanthomonas oryzae pv. oryzae. J. Eco-Friend Agric. 8 86–88

    Google Scholar 

  • Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R and Sharma TR 2018 Prospects of understanding the molecular biology of disease resistance in rice. Int. J. Mol. Sci. 19 1141

    PubMed Central  Google Scholar 

  • Singh RN 1971a Perpetuation of bacterial blight disease of paddy and preservation of its incitant. I. Survival of Xanthomonas oryzae in water. Indian Phytopathol. 24 1531–1554

    Google Scholar 

  • Singh RN 1971b Perpetuation of bacterial blight disease of paddy and preservation of its incitant. II. Survival of Xanthomonas oryzae in soil. Indian Phytopathol. 24 1401–1444

    Google Scholar 

  • Singh RN 1972 Perpetuation of the bacterial blight disease of rice in North India. Indian Phytopathol. 25 1481–1450

  • Singh RN and Saksena HK 1968 Bacterial blight disease of paddy - Symptomatology. Plant Dis. Reptr. 52 6636–6664

    Google Scholar 

  • Sinha D, Gupta MK, Patel HK, Ranjan A and Sonti RV 2013 Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS ONE 8 e75867

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, et al. 1995 A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270 1804–1806

    CAS  PubMed  Google Scholar 

  • Srinivasan N 1982 Effect of plant age on the kresek (wilt) phase of bacterial blight of rice. Indian Phytopathol. 35 3543–3556

    Google Scholar 

  • Srivastava DN and Rao YP 1966 Symptoms and diagnosis of the bacterial blight disease. Curr. Sci. 35 60–61

    Google Scholar 

  • Streubel J, Pesce C, Hutin M, Koebnik R, Boch J and Szurek B 2013 Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 200 808–819

    CAS  PubMed  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S and Zhang Q 2004 Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37 517–527

    CAS  PubMed  Google Scholar 

  • Sun X, Yang Z, Wang S and Zhang Q 2003 Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor. Appl. Genet. 106 683–687

    CAS  PubMed  Google Scholar 

  • Sundaram RM, Chatterjee S, Oliva R, Laha GS, Cruz CV, Leach JE and Sonti RV 2014 Update on bacterial blight of rice: fourth international conference on bacterial blight. Rice 7 12

    PubMed  PubMed Central  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Rani NS, Sarma NP and Sonti RV 2008 Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160 411–422

    Google Scholar 

  • Sureshkumar V, Dutta B, Kumar V, Prakash G, Mishra DC, Chaturvedi KK, Rai A, Sevanthi AM and Solanke AU 2019 RiceMetaSysB: a database of blast and bacterial blight responsive genes in rice and its utilization in identifying key blast-resistant WRKY genes. Database 2019 baz015

  • Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW and Kersters K 1990 Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae.) and bacterial leaf streak (Xanthomonas campestris pv. oryzae) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama, 1922) sp. Intern. J. Syst. Bacteriol. 40 309–311

    Google Scholar 

  • Syed-Ab-Rahman SF, Carvalhais LC and Omar D 2020 Development of plant-based emulsion formulations to control bacterial leaf blight and sheath brown rot of rice. Heliyon 6 e03151

    PubMed  PubMed Central  Google Scholar 

  • Tian D, Wang J, Zheng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, et al. 2014 The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26 497–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Jamil S, Iqbal MZ, Shaheen HL, Hasni SM, Jabeen S, Mehmod A and Akhter M 2012 Detection of bacterial blight resistance genes in basmati rice landraces. Genet. Mol. Res. 11 1960–1966

    CAS  PubMed  Google Scholar 

  • Wang CL, Qin TF, Yu HM, Zhang XP, Che JY, Gao Y, Zheng CK, Yang B and Zhao KJ 2014 The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol. 15 333–341

    CAS  PubMed  Google Scholar 

  • Wang CL, Zhang XP, Fan YL, Gao Y, Zhu QL, Zheng CK, Qin TF, Li YQ, et al. 2015 XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol. Plant 8 290–302

    CAS  PubMed  Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S and Ronald PC 1996 The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol. Plant Microbe Interact. 9 850–855

    CAS  PubMed  Google Scholar 

  • Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE, Tran TT, Perez-Quintero AL, Szurek B and Bogdanove AJ 2017 TAL effectors drive transcription bidirectionally in plants. Mol. Plant 10 285–296

    CAS  PubMed  Google Scholar 

  • Webb KM, Ona I, Bai J, Garrett KA, Mew T, Vera Cruz CM and Leach JE 2010 A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol. 185 568–576

    CAS  PubMed  Google Scholar 

  • Wengelnik K, Ackerveken GV and Bonas U 1996 HrpG, a key hrp Regulatory protein of Xanthomonas campestris pv. Vesicatoria is homologous to two-component response regulators. Mol. Plant Microbe Interact. 9 704–712

    CAS  PubMed  Google Scholar 

  • Wu L, Goh ML, Sreekala C and Yin Z 2008 XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv. oryzae. Plant Physiol. 148 1497–1509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu GW and Gonzalez CF 1989 Evaluation of TN4431-induced protease mutants of Xanthomonas campestris pv. oryzae for growth in plants and pathogenicity. Phytopathology 79 1210–1215

    Google Scholar 

  • Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, et al. 2019 Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant. 12 1434–1446

    CAS  PubMed  Google Scholar 

  • Xu Z, Zou L, Ma W, Cai L, Yang Y and Chen G 2017 Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. J. Intergr. Agric. 16 60345–60347

    Google Scholar 

  • Yang B, Sugio A and White FF 2006 Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc. Natl. Acad. Sci. USA 103 10503–10508

    CAS  PubMed  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M and Iqbal M 2017 Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8 1895

    PubMed  PubMed Central  Google Scholar 

  • Yuan M, Chu ZH, Li XH, Xu CG and Wang SP 2010 The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22 3164–3176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X and Wang S 2016 A host basal transcription factor is a key component for infection of rice by TALE carrying bacteria. elife 5 e19605

  • Yugander A, Sundaram RM, Ladhalakshmi D, Hajira SK, Prakasam V, Prasad MS, Madhav MS, Babu VR and Laha GS 2017 Virulence profiling of Xanthomonas oryzae pv. oryzae isolates, causing bacterial blight of rice in India. Eur. J. Plant Pathol. 149 171–191

    CAS  Google Scholar 

  • Yugander A, Sundaram RM, Singh K, Ladhalakshmi D, Subba Rao LV, Madhav MS, Badri J, Prasad MS, Laha GS 2018 Incorporation of the novel bacterial blight resistance gene Xa38 into the genetic background of elite rice variety Improved Samba Mahsuri. PLoS ONE 13 e0198260

    PubMed  PubMed Central  Google Scholar 

  • Zaka A, Grande G, Coronejo T, Quibod I, Chen CW, Chang SJ, Szurek B, Arif M, et al. 2018 Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS One 13 e0203711

    PubMed  PubMed Central  Google Scholar 

  • Zhai W, Li X, Tian W, Zhou Y, Pan X, Cao S, Zhao X, Zhao B, et al. 2000 Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system. Sci. China Ser. C.-Life Sci. 43 361–368

    CAS  Google Scholar 

  • Zhang H and Wang S 2013 Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16 188–195

    PubMed  Google Scholar 

  • Zhang SY, Tan GL, Ren GM, Li MR, Li YY, Lan PX, Gui FR, Wang HN, et al. 2015 Investigation of rice virus diseases and analysis of the molecular variation of RSV isolates in the main rice-growing areas of Yunnan Province from 2013 to 2014. Chin. J. Rice Sci. 29 535–545

    Google Scholar 

  • Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ and Voytas DF 2013 Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161 20–27

    CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, et al. 2015 Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82 632–643

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Ministry of Human Resource Development (No. MHRD-FAST-CoE (F.No.5–6/2013-TSVII) sanctioned to SU and Core funding from the Department of Agriculture, Tamil Nadu Government through University-PDF support to BJ by Tamil Nadu Agricultural University, Coimbatore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Uthandi.

Additional information

Corresponding editor: Manchikatla Venkat Rajam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, J.B., Arul, L., Ramalingam, J. et al. Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management. J Biosci 45, 112 (2020). https://doi.org/10.1007/s12038-020-00085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00085-8

Keywords

Navigation