Skip to main content
Log in

Comprehensive transcriptomics and proteomics analyses of rice stripe virus-resistant transgenic rice

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Stable transgenic rice line (named KRSV-1) with strong resistance against rice stripe virus was generated using the gene sequence of disease-specific protein by RNA interference. Comprehensive safety assessment of transgenic plants has turned into a significant field of genetic modification food safety. In this study, a safety assessment of KRSV-1 was carried out in a stepwise approach. The molecular analysis exhibited that KRSV-1 harbored one copy number of transgene, which was integrated into the intergenic non-coding region of chromosome 2 associated with inter-chromosomal translocations of 1.6-kb segments of chromosome 8. Then, transcriptomics and proteomics analyses were carried out to detect the unintended effects as a result of the integration of the transgene. Although 650 dramatically differentially expressed genes (DDEGs) and 357 differentially expressed proteins were detected between KRSV-1 and wild-type (WT) by transcriptomics and proteomics analyses, no harmful members in the form of toxic proteins and allergens were observed. Encouragingly, the nutritional compositions of seeds from KRSV-1 were comparable with WT seeds. The results of this entire study of molecular analysis, transcriptome and proteome profile of KRSV-1 revealed that no detrimental changes in the form of toxic proteins and allergens were detected in the transgenic rice line due to the integration of the transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adachi T, Izumi H, Yamada T, Tanaka K, Takeuchi S, Nakanuma R and Matsuda T 1993 Gene structure and expression of rice seed allergenic proteins belonging to the α- amylase/trypsin inhibitor gene family. Plant Mol. Biol. 21 239–248

    Article  CAS  Google Scholar 

  • Alvarez AM, Adachi T, Nakase M, Aoki N, Nakanuma R and Matsuda T 1995 Classification of rice allergenic protein cDNAs beloninging to the a-amylase/trypsin inhibitor gene family. Biochimica Biophysica Acta 1251 201–204

    Article  Google Scholar 

  • Bawa AS and Anilakumar KR 2013 Genetically modified foods: Safety, risks and public concerns. J. Food Sci. Technol. 50 1035–1046

    Article  CAS  Google Scholar 

  • Cao S, He X, Xu W, Luo Y, Ran W, Liang L, Dai Y and Huang K 2012 Potential allergenicity research of Cry1C protein from genetically modified rice. Regul. Toxicol. Pharmacol. 63 181–187

    Article  CAS  Google Scholar 

  • Clive J 2007 The global status of the commercialized biotechnological/genetically modified crops: 2006. Tsitol. Genet. 41 10–12

    PubMed  Google Scholar 

  • Conner AJ and Jacobs JM 1999 Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat. Res. 443 223–234

    Article  CAS  Google Scholar 

  • Conner AJ and Jacobs JM 2000 Food risks from transgenic crops in perspective. Nutrition 16 709–711

    Article  CAS  Google Scholar 

  • Dang L and Van Damme EJ 2015 Toxic proteins in plants. Phytochemistry 117 51–64

    Article  CAS  Google Scholar 

  • Filipecki M and Malepszy S 2006 Unintended consequences of plant transformation: A molecular insight. J. Appl. Genet. 47 277–286

    Article  Google Scholar 

  • Fraiture MA, Herman P, Lefevre L, Taverniers I, De Loose M, Deforce D and Roosens NH 2015 Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices. BMC Biotechnol. 15 76

    Article  Google Scholar 

  • Han C, Yin X, He D and Yang P 2013 Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS One 8 e56947

    Article  CAS  Google Scholar 

  • Hayano-Saito Y, Tsuji T, Fujii K, Saito K, Iwasaki M and Saito A 1998 Localization of the rice stripe disease resistance gene, Stvb-i by graphical genotyping and linkage analyses with molecular markers. Theor. Appl. Genet. 101 59–63

    Article  Google Scholar 

  • Hirano K, Hino S, Oshima K, Okajima T, Nadano D, Urisu A, Takaiwa F and Matsuda T 2013 Allergenic potential of rice-pollen proteins: expression, immuno-cross reactivity and IgE-binding. J. Biochem. 154 195–205

    Article  CAS  Google Scholar 

  • Holst-Jensen A, Bertheau Y, de Loose M, Grohmann L, Hamels S, Hougs L, Morisset D, Pecoraro S, Pla M, Van den Bulcke M and Wulff D. 2012 Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnol. Adv. 30 1318–1335

    Article  CAS  Google Scholar 

  • Jiang SL, Wu JG, Feng Y, Yang XE and Shi CH 2007 Correlation analysis of mineral element contents and quality traits in milled rice (Oryza sativa L.). J. Agric. Food Chem. 55 9608–9613

    Article  CAS  Google Scholar 

  • Ke Y, Deng H and Wang S 2017 Advances in understanding broad-spectrum resistance to pathogens in rice. Plant J. 90 738–748

    Article  CAS  Google Scholar 

  • Khush GS 2005 What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59 1–6

    Article  CAS  Google Scholar 

  • Kneidinger B, Graninger M and Messner P 2001 Chromosome walking by cloning of distinct PCR fragments. BioTechniques 30 248–249

    Article  CAS  Google Scholar 

  • Kok EJ, Pedersen J, Onori R, Sowa S, Schauzu M, De Schrijver A and Teeri TH 2014 Plants with stacked genetically modified events: To assess or not to assess? Trends Biotechnol. 32 70–73

    Article  CAS  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HP and Kok EJ 2001 Assessment of the food safety issues related to genetically modified foods. Plant J. 27 503–528

    Article  CAS  Google Scholar 

  • Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE and Piller KJ 2015 A comparison of transgenic and wild type soybean seeds: Analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol. 15 89

    Article  Google Scholar 

  • Li G, Zhang J, Tong X, Liu W and Ye X 2011 Heat shock protein 70 inhibits the activity of influenza A virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo. PLoS One 6 e16546

    Article  CAS  Google Scholar 

  • Liu YG and Chen Y 2007 High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques 43 649–650, 652, 654 passim

    Article  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T and Whittier RF 1995 Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8 457–463

    Article  CAS  Google Scholar 

  • Ma J, Song Y, Wu B, Jiang M, Li K, Zhu C and Wen F 2011 Production of transgenic rice new germplasm with strong resistance against two isolations of rice stripe virus by RNA interference. Transgenic Res. 20 1367–1377

    Article  CAS  Google Scholar 

  • Mishra P, Singh S, Rathinam M, Nandiganti M, Ram Kumar N, Thangaraj A, Thimmegowda V, Krishnan V, Mishra V, Jain N, Rai V, Pattanayak D and Sreevathsa R. 2017 Comparative proteomic and nutritional composition analysis of independent transgenic pigeon pea seeds harboring cry1AcF and cry2Aa genes and their nontransgenic counterparts. J. Agric. Food Chem. 65 1395–1400

    Article  CAS  Google Scholar 

  • Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, and Marra MA 2009 Next-generation tag sequencing for cancer gene expression profiling. Genome Res. 19 1825–1835

    Article  CAS  Google Scholar 

  • Ogo Y, Takahashi H, Wang S and Takaiwa F 2014 Generation mechanism of novel, huge protein bodies containing wild type or hypoallergenic derivatives of birch pollen allergen Bet v 1 in rice endosperm. Plant Mol. Biol. 86 111–123

    Article  CAS  Google Scholar 

  • Park HM, Choi MS, Kwak DY, Lee BC, Lee JH, Kim MK, Kim YG, Shin DB, Park SK and Kim YH 2012 Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene. Mol. Cells 33 43–51

    Article  CAS  Google Scholar 

  • Ren Y, Lv J, Wang H, Li L, Peng Y and Qu LJ 2009 A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis. J. Genet. Genomics 36 629–639

    Article  CAS  Google Scholar 

  • Rischer H and Oksman-Caldentey KM 2006 Unintended effects in genetically modified crops: Revealed by metabolomics? Trends Biotechnol. 24 102–104

    Article  CAS  Google Scholar 

  • Ruebelt MC, Lipp M, Reynolds TL, Schmuke JJ, Astwood JD, DellaPenna D, Engel KH and Jany KD 2006 Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of gentically modified crops. 3. Assessing unintended effects. J. Agric. Food Chem. 54 2169–2177

    Article  CAS  Google Scholar 

  • Russell SD, Bhalla PL and Singh MB 2008 Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. Japonica). Mol. Plant 1 751–759

    Article  CAS  Google Scholar 

  • Sanchez Perez I, Culzoni MJ, Siano GG, Gil Garcia MD, Goicoechea HC and Martinez Galera M 2009 Detection of unintended stress effects based on a metabonomic study in tomato fruits after treatment with carbofuran pesticide. Capabilities of MCR-ALS applied to LC-MS three-way data arrays. Anal. Chem. 81 8335–8346

    Article  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R and Shin JS 2005 Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 24 216–224

    Article  CAS  Google Scholar 

  • Satoh R, Nakamura R, Komatsu A, Oshima M and Teshima R 2011 Proteomic analysis of known and candidate rice allergens between non-transgenic and transgenic plants. Regul. Toxicol. Pharmacol. 59 437–444

    Article  CAS  Google Scholar 

  • Shi B, Lin L, Wang S, Guo Q, Zhou H, Rong L, Li J, Peng J, Lu Y, Zheng H, Yang Y, Chen Z, Zhao J, Jiang T, Song B, Chen J and Yan F 2016 Identification and regulation of host genes related to rice stripe virus symptom production. New Phytol. 209 1106–1119

    Article  CAS  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T and Omura T 2011 Targeting specific genes for RNA interference is crucial to the development of strong resistance to rice stripe virus. Plant Biotechnol. J. 9 503–512

    Article  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA and Lukyanov SA 1995 An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23 1087–1088

    Article  CAS  Google Scholar 

  • Sun F, Fang P, Li J, Du L, Lan Y, Zhou T, Fan Y, Shen W and Zhou Y 2016 RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Virol. J. 13 202

    Article  Google Scholar 

  • Tax FE and Vernon DM 2001 T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 126 1527–1538

    Article  CAS  Google Scholar 

  • Usui Y, Nakase M, Hotta H, Urisu A, Aoki N, Kitajima K and Matsuda T 2001 A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I. J. Biol. Chem. 276 11376–11381

    Article  CAS  Google Scholar 

  • Vazquez Rovere C, del Vas M and Hopp HE 2002 RNA-mediated virus resistance. Curr. Opin. Biotechnol. 13 167–172

    Article  Google Scholar 

  • Wakasa Y, Takagi H, Hirose S, Yang L, Saeki M, Nishimura T, Kaminuma O, Hiroi T and Takaiwa F 2013 Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. Plant Biotechnol. J. 11 66–76

    Article  CAS  Google Scholar 

  • Wang B, Hajano JU, Ren Y, Lu C and Wang X 2015 iTRAQ-based quantitative proteomics analysis of rice leaves infected by rice stripe virus reveals several proteins involved in symptom formation. Virol. J. 12 99

    Article  CAS  Google Scholar 

  • Wang MB, Abbott DC and Waterhouse PM 2000 A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 1 347–356

    Article  CAS  Google Scholar 

  • Wang Q, Liu Y, He J, Zheng X, Hu J, Liu Y, Dai H, Zhang Y, Tao X, Deng H, Yuan D, Jiang L, Zhang X, Guo X, Cheng X, Wu C, Wang H, Yuan L and Wan J 2014 STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat. Commun. 5 4768

    Article  CAS  Google Scholar 

  • Wilson RC and Doudna JA 2013 Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42 217–239

    Article  CAS  Google Scholar 

  • Xu H, Theerakulpisut P, Goulding N, Suphioglu C, Singh MB and Bhalla PL 1995 Cloning, expression and immunological characterization of Ory s 1, the major allergen of rice pollen. Gene 164 255–259

    Article  CAS  Google Scholar 

  • Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F and Zhu C 2018 NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci. Rep. 8 8873

    Article  Google Scholar 

  • Yang L, Fu FL, Fu FL and Li WC 2011 T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens. Yi Chuan 33 1327–1334

    Article  CAS  Google Scholar 

  • Zhai W, Chen C, Zhu X, Chen X, Zhang D, Li X and Zhu L 2004 Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice. Theor. Appl. Genet. 109 534–542

    Article  CAS  Google Scholar 

  • Zhang H, He D, Yu J, Li M, Damaris RN, Gupta R, Kim ST and Yang P 2016 Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH. Proteomics 16 989–1000

    Article  CAS  Google Scholar 

  • Zhao Y and Li YY 2013 Unintended effects assessment of genetically modified crops using omics techniques. Yi Chuan. 35 1360–1367

    Article  CAS  Google Scholar 

  • Zhao W, Yang P, Kang L and Cui F 2016 Different pathogenicities of rice stripe virus from the insect vector and from viruliferous plants. New Phytol. 210 196–207

    Article  CAS  Google Scholar 

  • Zhou Y, Tao Y, Zhu J, Miao J, Liu J, Liu Y, Yi C, Yang Z, Gong Z and Liang G 2017 GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice 10 34

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao, China for composition analysis. The authors acknowledge financial support from the China National Transgenic Plant Research and Commercialization Project (Grant No. 2016ZX08001-002) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxiang Zhu.

Additional information

Communicated by BJ Rao.

Corresponding editor: BJ Rao

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Bi, L., Yu, Z. et al. Comprehensive transcriptomics and proteomics analyses of rice stripe virus-resistant transgenic rice. J Biosci 44, 81 (2019). https://doi.org/10.1007/s12038-019-9914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9914-2

Keywords

Navigation