Skip to main content
Log in

Stability analysis of a prey refuge predator–prey model with Allee effects

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We constructed a discrete-time predator–prey model by adding prey refuge and Allee effects (predator saturation on prey and mate limitation on predator) to an earlier prey–predator model and examined its dynamics. We show the existence of positive fixed points and study the stability properties. The numerical simulations and bifurcation diagrams verify the impact of refuge and the Allee mechanism on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Celik C and Duman O 2009 Allee effect in a discrete time predator-prey system. Chaos, Solitons Fractals. 40 1956–1962

    Article  Google Scholar 

  • Courchamp F, Berec L and Gascoigne J 2008 Allee effects in ecology and conservation (Oxford: Oxford University Press)

    Book  Google Scholar 

  • Elaydi S 2008 Discrete chaos: With applications in science and engineering 2nd edition (Boca Raton: Chapman & Hall/CRC)

    Google Scholar 

  • Hassell MP 1978 The dynamics of arthropod predator-prey systems (Princeton, NJ: Princeton University Press)

  • Hassell MP and May RM 1973 Stability in insect host-parasite models. J. Anim. Ecol. 42 693–726

    Article  Google Scholar 

  • Hassell MP, Lawton JH and Beddington JR 1976 The components of arthropod predation: I. The prey death-rate. J. Anim. Ecol. 45 135–164

    Article  Google Scholar 

  • Jana D 2013 Chaotic dynamics of a discrete predator-prey system with prey refuge. Appl. Math. Comput. 224 848–865

    Google Scholar 

  • Ma Z, Li W, Zhao Y, Wang W, Zhang H and Li Z 2009 Effects of prey refuges on a predator–prey model with a class of functional responses: The role of refuges. Math. Biosci. 218 73–79

    Article  Google Scholar 

  • McNair JN 1986 The effects of refuges on predator-prey interactions—a reconsideration. Theor. Popul. Biol. 29 38–63

    Article  CAS  Google Scholar 

  • Rana S, Bhowmick AR and Bhattacharya S 2014 Impact of prey refuge on a discrete time predator-prey system with Allee effect. Int. J. Bifurcation Chaos 24 1450106

    Article  Google Scholar 

  • Scheuring I 1999 Allee effect increases the dynamical stability of populations. J. Theor. Biol. 199 407–414

    Article  CAS  Google Scholar 

  • Schreiber SJ 2003 Allee effects, extinctions, and chaotic transients in simple population models. Theor. Popul. Biol. 64 201–209

    Article  Google Scholar 

  • Taylor RJ 1984 Predation (NY: Chapman and Hall)

    Book  Google Scholar 

  • Ufuktepe U, Kapcak S and Akman O 2013 Stability and invariant manifold for a predator–prey model with Allee effect. Adv. Differ. Equ. 1 1–8

    Google Scholar 

  • Wang G, Liang X-G and Wang F-Z 1999 The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124 183–192

    Article  Google Scholar 

Download references

Acknowledgement

This study is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olcay Akman.

Additional information

Corresponding editor: N. G. Prasad

Appendix

Appendix

If a non-hyperbolic map is defined on \( {\mathbb{R}}^{2} \), then its dynamics may be analyzed by studying the dynamics on an associated one-dimensional center manifold \( M_{\text{c}} \) (Elaydi 2008). This theorem is applicable only for the fixed point (0,0). Hence, we get the following new system by setting \( x_{t} = N_{t} - 1 \) and \( y_{t} = P_{t} \):

$$ \begin{array}{*{20}l} {x_{t + 1} = x_{t} - e^{{ - (\beta /1 + s(1 + x_{t} ))}} rx_{t} (1 + x_{t} ) - a(1 - d)(1 + x_{t} )y_{t} } \hfill \\ {y_{t + 1} = y_{t} + \frac{{a((1 - d)(1 + x_{t} ) - y_{t} )y_{t}^{2} }}{{m + y_{t} }}.} \hfill \\ \end{array} $$
(6)

Let \( J^{*} \) be the Jacobian matrix of the system (6). Then

$$ J^{*} (0,0) = \left( {\begin{array}{*{20}c} {1 - re^{ - (\beta /1 + s)} } & { - a(1 - d)} \\ 0 & 1 \\ \end{array} } \right) $$

Rewriting system (6), we obtain

$$ \begin{array}{*{20}l} {x_{t + 1} = (1 - re^{ - (\beta /1 + s)} )x_{t} - ay_{t} (1 - d) + \tilde{f}(x_{t} ,y_{t} )} \hfill \\ {y_{t + 1} = y_{t} + \tilde{g}(x_{t} ,y_{t} ),} \hfill \\ \end{array} $$
(7)

where

$$ \tilde{f}(x,y) = x({\text{re}}^{ - (\beta /1 + s)} - {\text{re}}^{ - (\beta /1 + s + sx)} (1 + x) + a( - 1 + d)y), $$

and

$$ \tilde{g}(x,y) = \frac{{a((1 - d)(1 + x) - y)y^{2} }}{m + y}. $$

By using the Taylor series expansion of \( e^{ - (\beta /1 + s + sx)} \) at the point \( x = 0 \), we approximate

$$ e^{ - (\beta /1 + s + sx)} \approx e^{ - (\beta /1 + s)} + \frac{{ae^{ - (\beta /1 + s)} sx}}{{(1 + s)^{2} }} + \frac{{\beta e^{ - (\beta /1 + s)} ( - 2 + \beta - 2s)s^{2} x^{2} }}{{2(1 + s)^{4} }} + O(x^{3} ) $$

For simplification, let \( k = e^{ - (\beta /1 + s)} \). Then

$$ \tilde{f}(x,y) \approx x\left( {kr - \left( {k + \frac{\beta ksx}{{(1 + s)^{2} }} + \frac{{\beta k( - 2 + \beta - 2s)s^{2} x^{2} }}{{2(1 + s)^{4} }}} \right)r(1 + x) + a( - 1 + d)y} \right). $$

Since the invariant manifold is tangent to the corresponding eigenspace by the Invariant Manifold Theorem, assume that the map \( h \) takes the form

$$ h(y) = \frac{a(d - 1)}{rk}y + c_{1} y^{2} + c_{2} y^{3} + O(y^{4} ). $$

To compute \( c_{1} \) and \( c_{2} \), the following functional equation should be solved:

$$ h(y + \tilde{g}(h(y),y)) \approx (1 - re^{ - (\beta /1 + s)} )h(y) - a(1 - d)y + \tilde{f}(h(y),y). $$

We have

$$ c_{1} \approx - \frac{{a^{2} ( - 1 + d)^{2} \left( { - 1 - 2s - s^{2} + ms\beta } \right)}}{{k^{2} mr^{2} (1 + s)^{2} }}, $$

and

$$ \begin{aligned} c_{2} \approx & \frac{{a^{2} ( - 1 + d)}}{{2k^{3} m^{2} r^{3} (1 + s)^{4} }}(2k(1 - d + m)r(1 + s)^{4} \\ & + a( - 1 + d)^{2} (4(1 + s)^{4} + 2ms(1 + s) \\ & ( - 4 + ( - 4 + m)s)\beta + 3m^{2} s^{2} \beta^{2} )). \\ \end{aligned} $$

This leads to the equation

$$ \begin{aligned} P(y) \approx & y - \frac{{a( - 1 + d)y^{2} }}{m} - \frac{{a\left( {a( - 1 + d)^{2} m + k(1 - d + m)r} \right)y^{3} }}{{km^{2} r}} \\ & + \frac{{a\left( {1 - d + m + (a( - 1 + d)^{2} m/kr) - (a^{2} ( - 1 + d)^{3} m\left( {(1 + s)^{2} - ms\beta } \right)/k^{2} r^{2} (1 + s)^{2} )} \right)y^{4} }}{{m^{3} }}. \\ \end{aligned} $$

We have \( P^{\prime}(0) = 1 \) and \( P^{\prime \prime } (0) = 2a(1 - d)/m > 0 \) for \( a > 0 \), \( m > 0 \) and \( d \in [0,1) \). Hence, by Theorem 1.5 in Elaydi (2008), (1, 0) is a semistable fixed point if \( \beta /(1 + s) > \ln (r/2) \) (See figure 13).

Figure 13
figure 13

The map P on the semistable invariant manifold \( x = h(y) \) for \( \beta = 4 \), \( a = 2 \), \( r = 5 \), \( s = 1 \), \( m = 2 \) and \( d = 0.4 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ufuktepe, U., Kulahcioglu, B. & Akman, O. Stability analysis of a prey refuge predator–prey model with Allee effects. J Biosci 44, 85 (2019). https://doi.org/10.1007/s12038-019-9911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9911-5

Keywords

Navigation