Skip to main content

Advertisement

Log in

Classical swine fever virus non-structural protein 4B binds tank-binding kinase 1

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Classical swine fever (CSF) is a contagious disease with a high mortality rate and is caused by classical swine fever virus (CSFV). CSFV non-structural protein 4B (NS4B) plays a crucial role in CSFV replication and pathogenicity. However, precisely how NS4B exerts these functions remains unknown, especially as there are no reports relating to potential cellular partners of CSFV NS4B. Here, a yeast two-hybrid (Y2H) system was used to screen the cellular proteins interacting with NS4B from a porcine alveolar macrophage (PAM) cDNA library. The protein screen along with alignment using the NCBI database revealed 14 cellular proteins that interact with NS4B: DDX39B, COX7C, FTH1, MAVS, NR2F6, RPLP1, PSMC4, FGL2, MKRN1, RPL15, RPS3, RAB22A, TP53BP2 and TBK1. These proteins mostly relate to oxidoreductase activity, signal transduction, localization, biological regulation, catalytic activity, transport and metabolism by GO categories. Tank-binding kinase 1 (TBK1) was chosen for further confirmation. The NS4B-TBK1 interaction was further confirmed by subcellular co-location, co-immunoprecipitation and glutathione S-transferase pull-down assays. This study offers a theoretical foundation for further understanding of the diversity of NS4B functions in relation to viral infection and subsequent pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bensaude E, Turner JL, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T and Powell PP 2004 Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J. Gen. Virol. 85 1029–1037

    Article  CAS  Google Scholar 

  • Campos RK, Wong B, Xie X, Lu YF, Shi PY, Pompon J, Garcia-Blanco MA and Bradrick SS 2017 RPLP1 and RPLP2 are essential flavivirus host factors that promote early viral protein accumulation. J. Virol. 91 e01706–e017s16

    Article  CAS  Google Scholar 

  • Chen LJ, Dong XY, Zhao MQ, Shen HY, Wang JY, Pei JJ, Liu WJ, Luo YW, et al. 2012 Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro and in vivo. Virol. J. 9 293

    Article  CAS  Google Scholar 

  • Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, et al. 2006 RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127 157–170

    Article  CAS  Google Scholar 

  • Ding Q, Cao X, Lu J, Huang B, Liu YJ, Kato N, Shu HB and Zhong J 2013 Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J. Hepatol. 59 52–58

    Article  CAS  Google Scholar 

  • Fernandez-Sainz I, Gladue DP, Holinka LG, O’Donnell V, Gudmundsdottir I, Prarat MV, Patch JR, Golde WT, et al. 2010 Mutations in classical swine fever virus NS4B affect virulence in swine. J. Virol. 84 1536–1549

    Article  CAS  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, et al. 2003 IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4 491–496

    Article  CAS  Google Scholar 

  • Gladue DP, Gavrilov BK, Holinka LG, Fernandez-Sainz IJ, Vepkhvadze NG, Rogers K, O’Donnell V, Risatti GR, et al. 2011 Identification of an NTPase motif in classical swine fever virus NS4B protein. Virology 411 41–49

    Article  CAS  Google Scholar 

  • Hermann-Kleiter N and Baier G 2014 Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun. Signal. 12 38

    Article  Google Scholar 

  • Huang L, Xiong T, Yu H, Zhang Q, Zhang K, Li C, Hu L, Zhang Y, et al. 2017 Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKepsilon-IRF3 complex. Biochem. J. 474 2051–2065

    Article  CAS  Google Scholar 

  • Jefferson M, Donaszi-Ivanov A, Pollen S, Dalmay T, Saalbach G and Powell PP 2014 Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. J. Virol. 88 10340–10353

    Article  Google Scholar 

  • Johns HL, Bensaude E, La Rocca SA, Seago J, Charleston B, Steinbach F, Drew TW, Crooke H, et al. 2010 Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J. Gen. Virol. 91 1038–1046

    Article  CAS  Google Scholar 

  • Kang K, Guo K, Tang Q, Zhang Y, Wu J, Li W and Lin Z 2012 Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis. Mol. Biol. Rep. 39 10515–10524

    Article  CAS  Google Scholar 

  • Kaukinen P, Sillanpaa M, Nousiainen L, Melen K and Julkunen I 2013 Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKepsilon and TBK1 functions. J. Med. Virol. 85 71–82

    Article  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, et al. 2005 IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6 981–988

    Article  CAS  Google Scholar 

  • Khattar R, Luft O, Yavorska N, Shalev I, Phillips MJ, Adeyi O, Gao D, Bartczak A, et al. 2013 Targeted deletion of FGL2 leads to increased early viral replication and enhanced adaptive immunity in a murine model of acute viral hepatitis caused by LCMV WE. PLoS One 8 e72309

    Article  CAS  Google Scholar 

  • Lamp B, Riedel C, Wentz E, Tortorici MA and Rumenapf T 2013 Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J. Virol. 87 11872–11883

    Article  CAS  Google Scholar 

  • Lee EW, Lee MS, Camus S, Ghim J, Yang MR, Oh W, Ha NC, Lane DP, et al. 2009 Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J. 28 2100–2113

    Article  CAS  Google Scholar 

  • Li H, Zhang C, Cui H, Guo K, Wang F, Zhao T, Liang W, Lv Q, et al. 2016 FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication. Virus Genes 52 99–106

    Article  Google Scholar 

  • Li S, Wang J, Yang Q, Naveed Anwar M, Yu S and Qiu HJ 2017 Complex virus-host interactions involved in the regulation of classical swine fever virus replication: A minireview. Viruses 9 E171

    Article  Google Scholar 

  • Li S, Wang J, He WR, Feng S, Li Y, Wang X, Liao Y, Qin HY, et al. 2015 Thioredoxin 2 Is a novel E2-interacting protein that inhibits the replication of classical swine fever virus. J. Virol. 89 8510–8524

    Article  CAS  Google Scholar 

  • Lin R, Heylbroeck C, Pitha PM and Hiscott J 1998 Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18 2986–2996

    Article  CAS  Google Scholar 

  • Liu F, Du ZY, He JL, Liu XQ, Yu QB and Wang YX 2012 FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis. Mol. Biol. Rep. 39 873–879

    Article  CAS  Google Scholar 

  • Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, Sun L and Chen ZJ 2013 MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2 e00785

    Article  Google Scholar 

  • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, et al. 2015 Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347 aaa2630

    Article  Google Scholar 

  • Lv H, Dong W, Qian G, Wang J, Li X, Cao Z, Lv Q, Wang C, et al. 2017a uS10, a novel Npro-interacting protein, inhibits classical swine fever virus replication. J. Gen. Virol. 98 1679–1692

    Article  CAS  Google Scholar 

  • Lv H, Dong W, Cao Z, Li X, Wang J, Qian G, Lv Q, Wang C, et al. 2017b TRAF6 is a novel NS3-interacting protein that inhibits classical swine fever virus replication. Sci. Rep. 7 6737

    Article  Google Scholar 

  • Lv Q, Guo K, Zhang G and Zhang Y 2016 The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction. J. Gen. Virol. 97 1636–1646

    Article  CAS  Google Scholar 

  • Lv Q, Guo K, Wang T, Zhang C and Zhang Y 2015 Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. J. Biosci. 40 477–485

    Article  CAS  Google Scholar 

  • Mendonca VR, Souza LC, Garcia GC, Magalhaes BM, Lacerda MV, Andrade BB, Goncalves MS and Barral-Netto M 2014 DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria. Malar. J. 13 278

    Article  Google Scholar 

  • Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, Kawabe T and Omata M 2005 Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology 41 1004–1012

    Article  CAS  Google Scholar 

  • Sanchez-Cordon PJ, Nunez A, Salguero FJ, Carrasco L and Gomez-Villamandos JC 2005 Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J. Comp. Pathol. 132 249–260

    Article  CAS  Google Scholar 

  • Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R and Hiscott J 2003 Triggering the interferon antiviral response through an IKK-related pathway. Science 300 1148–1151

    Article  CAS  Google Scholar 

  • Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, et al. 2017 ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 98 2–3

    Article  CAS  Google Scholar 

  • Stanborough T, Niederhauser J, Koch B, Bergler H and Pertschy B 2014 Ribosomal protein S3 interacts with the NF-kappaB inhibitor IkappaBalpha. FEBS Lett. 588 659–664

    Article  CAS  Google Scholar 

  • Sun Q, Sun L, Liu HH, Chen X, Seth RB, Forman J and Chen ZJ 2006 The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24 633–642

    Article  CAS  Google Scholar 

  • Sun W, Hu Y, Gong J, Zhu C and Zhu B 2005 Identification of beta-lactamase inhibitory peptide using yeast two-hybrid system. Biochemistry (Mosc.) 70 753–760

    Article  CAS  Google Scholar 

  • Tamura T, Sakoda Y, Yoshino F, Nomura T, Yamamoto N, Sato Y, Okamatsu M, Ruggli N, et al. 2012 Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J. Virol. 86 8602–8613

    Article  CAS  Google Scholar 

  • Tamura T, Ruggli N, Nagashima N, Okamatsu M, Igarashi M, Mine J, Hofmann MA, Liniger M, et al. 2015 Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence. J. Gen. Virol. 96 2623–2635

    Article  CAS  Google Scholar 

  • Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N and Randow F 2009 The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10 1215–1221

    Article  CAS  Google Scholar 

  • Wang J, Chen S, Liao Y, Zhang E, Feng S, Yu S, Li LF, He WR, et al. 2016 Mitogen-activated protein kinase kinase 2 (MEK2), a novel E2-interacting protein, promotes the growth of classical swine fever virus via attenuation of the JAK-STAT signaling pathway. J. Virol. https://doi.org/10.1128/JVI.01407-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wier EM, Neighoff J, Sun X, Fu K and Wan F 2012 Identification of an N-terminal truncation of the NF-kappaB p65 subunit that specifically modulates ribosomal protein S3-dependent NF-kappaB gene expression. J. Biol. Chem. 287 43019–43029

    Article  CAS  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z and Shu HB 2005 VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19 727–740

    Article  CAS  Google Scholar 

  • Xu Q, Chen Y, Zhang Y, Tong YY, Huang ZY, Zhao WM, Duan XJ, Li X, et al. 2014 Molecular cloning and expression analysis of ferritin, heavy polypeptide 1 gene from duck (Anas platyrhynchos). Mol. Biol. Rep. 41 6233–6240

    Article  CAS  Google Scholar 

  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K and Akira S 2002 Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169 6668–6672

    Article  CAS  Google Scholar 

  • Yang G and Hooper WC 2013 Physiological functions and clinical implications of fibrinogen-like 2: A review. World J. Clin. Infect. Dis. 3 37–46

    Article  Google Scholar 

  • Zhang C, He L, Kang K, Chen H, Xu L and Zhang Y 2014 Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis. J. Biosci. 39 63–74

    Article  Google Scholar 

  • Zhang C, Kang K, Ning P, Peng Y, Lin Z, Cui H, Cao Z, Wang J, et al. 2015 Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication. Virology 482 9–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Nature Science Foundation of China (No. 31472210) and Scientific Research Foundation of the Programs for Science and Technology Development of Henan Province, China (No. 162102110033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhang.

Additional information

Communicated by Saumitra Das.

Corresponding editor: Saumitra Das

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Dong, W., Cao, Z. et al. Classical swine fever virus non-structural protein 4B binds tank-binding kinase 1. J Biosci 43, 947–957 (2018). https://doi.org/10.1007/s12038-018-9802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9802-1

Keywords

Navigation