Skip to main content
Log in

Microirradiation techniques in radiobiological research

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The aim of this work is to review the uses of laser microirradiation and ion microbeam techniques within the scope of radiobiological research. Laser microirradiation techniques can be used for many different purposes. In a specific condition, through the use of pulsed lasers, cell lysis can be produced for subsequent separation of different analytes. Microsurgery allows for the identification and isolation of tissue sections, single cells and subcellular components, using different types of lasers. The generation of different types of DNA damage, via this type of microirradiation, allows for the investigation of DNA dynamics. Ion microbeams are important tools in radiobiological research. There are only a limited number of facilities worldwide where radiobiological experiments can be performed. In the beginning, research was mostly focused on the bystander effect. Nowadays, with more sophisticated molecular and cellular biological techniques, ion microirradiation is used to unravel molecular processes in the field of radiobiology. These include DNA repair protein kinetics or chromatin modifications at the site of DNA damage. With the increasing relevance of charged particles in tumour therapy and new concepts on how to generate them, ion microbeam facilities are able to address unresolved questions concerning particle tumour therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, et al. 1999 PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274 17860–17868

    Article  CAS  PubMed  Google Scholar 

  • Anoruo B, van Oorschot R, Mitchell J and Howells D 2007 Isolating cells from non-sperm cellular mixtures using the PALM microlaser micro dissection system. Forensic Sci. Int. 173 93–96

    Article  CAS  PubMed  Google Scholar 

  • Athen JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J and Kanaar R 2004 Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303 92–95

    Article  CAS  Google Scholar 

  • Auer S, Hable V, Greubel C, Drexler GA, Schmid TE, Belka C, Dollinger G and Friedl AA 2011 Survival of tumor cells after proton irradiation with ultra high dose rates. Radiat. Oncol. 6 139

    Article  PubMed Central  PubMed  Google Scholar 

  • Beygi S, Saadat S, Jazayeri SB and Rahimi-Movaghar V 2013 Epidemiology of pediatric primary malignant central nervous system tumors in Iran: a 10 year report of National Cancer Registry. Cancer Epidemiol. 37 396–401

    Article  PubMed  Google Scholar 

  • Bekker-Jensen S and Mailand N 2010 Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair 9 1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Berns MW, Olson RS and Rounds DE 1969 In vitro production of chromosomal lesions with an argon laser microbeam. Nature 221 74–75

    Article  CAS  PubMed  Google Scholar 

  • Berns MW 1978 The laser microbeam as a probe for chromatin structure and function. Methods Cell Biol. 182 77–294

    Google Scholar 

  • Berns MW, Aist J, Edwards J, Strahs K, Girton J, McNeill P, Rattner JB, Kitzes M, et al. 1981 Laser microsurgery in cell and developmental biology. Science 213 505–513

    Article  CAS  PubMed  Google Scholar 

  • Beyreuther E, Enghardt W, Kaluza M, Karsch L, Laschinsky L, Lessmann E, Nicolai M, Pawelke J, et al. 2010 Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. Med. Phys. 37 1392–400

    Article  CAS  PubMed  Google Scholar 

  • Bin J, Allinger K, Assmann W, Dollinger G, Drexler GA, Friedl AA, Habs D, Hilz P, et al. 2012 A laser-driven nanosecond proton source for radiobiological studies. Appl. Phys. Lett. 101 243701

    Article  CAS  Google Scholar 

  • Botvinick EL, Venugopalan V, Shah JV, Liaw LH and Berns MW 2004 Controlled ablation of microtubules using a picoseconds laser. Biophys. J. 874 203–4212

    Google Scholar 

  • Bräuer-Krisch E, Serduc R, Siegbahn EA, Le Duc G, Prezado Y, Bravin A, Blattmann H and Laissue JA 2010 Effects of pulsed, spatially fractionated, microscopic synchrotron x-ray beams on normal and tumoral brain tissue. Mutat. Res. 704 160–166

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW and Prasher DC 1994 Green fluorescent protein as a marker for gene expression. Science 263 802–805

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhao Y, Han W, Zhao G, Zhu L, Wang J, Bao L, Jiang E, et al. 2008 Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br. J. Cancer. 98 1839–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cremer C and Cremer T 1986 Induction of chromosome shattering by ultraviolet light and caffeine: the influence of different distributions of photolesions. Mutat. Res. 163 33–40

    Article  CAS  PubMed  Google Scholar 

  • Crosbie JC, Anderson RL, Rothkamm K, Restall CM, Cann L, Ruwanpura S, Meachem S, Yagi N, et al. 2010 Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int. J. Radiat. Oncol. Biol. Phys. 77 886–894

    Article  CAS  PubMed  Google Scholar 

  • Dilmanian FA, Morris GM, Le Duc G, Huang X, Ren B, Bacarian T, Allen JC, Kalef-Ezra J, et al. 2001 Response of avian embryonic brain to spatially segmented x-ray microbeams. Cell. Mol. Biol. 47 485–493

    CAS  PubMed  Google Scholar 

  • Dilmanian FA, Morris GM, Zhong N, Bacarian T, Hainfeld JF, Kalef-Ezra J, Brewington LJ, Tammam J, et al. 2003 Murine EMT-6 carcinonoma: high therapeutic efficacy of microbeam radiation therapy. Radiat. Res. 159 632–641

    Article  CAS  PubMed  Google Scholar 

  • Dollinger G, Bergmaier A, Hable V, Hertenberger R, Greubel C, Hauptner A and Reichart P 2009 Nanosecond pulsed Proton Microbeam. Nucl. Inst. Methods Phys. Res. B. 267 2008–2012

    Article  CAS  Google Scholar 

  • Doria D, Kakolee KF, Kar S, Litt SK, Fiorini F, Ahmed H, Green S, Jeynes JCG, et al. 2012 Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv. 2 011209

  • Drexler GA, Siebenwirth C, Drexler SE, Girst S, Greubel C, Dollinger G and Friedl AA 2015 Live cell imaging at the Munich ion microbeam SNAKE – a status report. Radiat. Oncol. 10 42

    Article  PubMed Central  PubMed  Google Scholar 

  • Du G, Drexler GA, Friedland W, Greubel C, Hable V, Krücken R, Kugler A, Tonelli L, et al. 2011 Spatial dynamics of DNA damage response protein foci along the ion trajectory of high-LET particles. Radiat. Res. 176 706–715

  • Fernandez-Palomo C, Mothersill C, Bräuer-Krisch E, Laissue J, Seymour C and Schültke E 2015 γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation. PLOS One. 10 e0119924

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Folkard M, Schettino G, Vojnovic B, Gilchrist S, Michette AG, Pfauntsch SJ, Prise KM and Michael BD 2001 A focused ultrasoft x-ray microbeam for targeting cells individually with submicrometer accuracy. Radiat. Res. 156 796–804

    Article  CAS  PubMed  Google Scholar 

  • Fourkal E, Velchev I, Ma CM and Fan J 2011 Linear energy transfer of proton clusters. Phys. Med. Biol. 56 3123–3136

    Article  CAS  PubMed  Google Scholar 

  • Friedl AA, Mazurek B and Seiler DM 2012 Radiation-induced alterations in histone modification patterns and their potential impact on short term radiation effects. Front. Oncol. 2 177

    Article  Google Scholar 

  • Gerardi S 2009 Ionizing radiation microbeam facilities for radiobiological studies in Europe. J. Radiat. Res. 50 A13–A20

    Article  CAS  PubMed  Google Scholar 

  • Girst S, Hable V, Drexler GA, Greubel C, Siebenwirth C, Haum M, Friedl AA and Dollinger G 2013 Subdiffusion supports joining of correct ends during repair of DNA double-strand breaks. Sci. Rep. 3 2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krücken R, et al. 2008a Quanatitative analysis of DNA-damage response factors after sequential ion microirradiation. Radiat. Environ. Biophys. 47 415–422

    Article  CAS  PubMed  Google Scholar 

  • Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krücken R, et al. 2008b Competition effect in DNA damage response. Radiat. Environ. Biophys. 47 422–429

    Google Scholar 

  • Greubel C, Assmann W, Burgdorf C, Dollinger G, Du G, Hable V, Hapfelmaier A, Hertenberger R, et al. 2011 Scanning irradiation device for mice in vivo with pulsed and continuous proton beams. Radiat. Environ. Biophys. 50 339–344

    Article  PubMed  Google Scholar 

  • Greulich KO and Pilarczyk G 1998 Laser tweezers and optical microsurgery in cellular and molecular biology. Working principles and selected applications. Cell. Mol. Biol. 44 701–710

    CAS  PubMed  Google Scholar 

  • Greulich KO, Pilarczyk G, Hoffmann A, Hörste GMZ, Schäfer B, Uhl V and Monajembashi S 2000 Micromanipulation by laser microbeamand optical tweezers: from plant cells to single molecules. J. Microsc. 198 182–187

    Article  CAS  PubMed  Google Scholar 

  • Grotzer MA, Schülte E, Bräuer-Krisch E and Laissue JA 2015 Microbeam radiation therapy: clinicalperpectives. Phys. Med. http://dx.doi.org/10.1016/j.ejmp.2015.02.011, in press

  • Hable V, Dollinger G, Greubel C, Hauptner A, Krücken R, Dietzel S, Cremer T, Drexler GA, et al. 2006 Methods for quantitative evaluation of dynamics of repair proteins within irradiated cells. Nucl. Inst. Methods Phys. Res. B. 245 298–301

    Article  CAS  Google Scholar 

  • Hable V, Drexler GA, Brüning T, Burgdorf C, Greubel C, Derer A, Seel J, Strickfaden H, et al. 2012 Recruitment kinetics of DNA repair proteins MDC1 and Rad52 but not 53BP1 depend on damage complexity. PLoS One 7, e41943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hadsell M, Cao G, Zhang J, Burk L, Schreiber T, Schreiber E, Chang S, Lu J, et al. 2014 Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med. Phys. 41 061710

    Article  PubMed Central  PubMed  Google Scholar 

  • Haince JF, McDonald D, Rodrigue A, Déry U, Masson JY, Hendzel MJ and Poirier GG 2008 PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283 1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Harken AD, Randers-Pehrson G, Johnson GW and Brenner DJ 2011 The Columbia University proton-induced soft x-ray microbeam. Nucl. Inst. Methods Phys. Res. B. 269 1992–1996

    Article  CAS  Google Scholar 

  • Hauptner A, Dietzel S, Drexler GA, Reichhart P, Krücken R, Cremer T, Friedl AA and Dollinger G 2004 Microirradiation of cells with energetic heavy ions. Radiat. Environ. Biophys. 42 237–245

    Article  CAS  PubMed  Google Scholar 

  • Hauptner A, Cremer T, Deutsch M, Dietzel S, Drexler GA, Greubel C, Hable V, Krücken R, et al. 2006 Irradiation of living cells with the ion microprobe SNAKE. Acta Phys. Polon. 109 273–278

    CAS  Google Scholar 

  • Hei TK, Zhou H, Chai Y, Ponnaiya B and Ivanov VN 2011 Radiation induced non-targeted response: mechanism and potential clinical implications. Curr. Mol. Pharmacol. 4 96–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Commission on Radiologicel Protection (ICRP) 2007 Recommendations of the International Commission on radiological protection. Publication 103. Annals of the ICRP 37

  • Ilnytskyy Y and Kovalchuk O 2011 Non-targeted radiation effects – an epigenetic connection. Mutat. Res. 714 113–125

    Article  CAS  PubMed  Google Scholar 

  • Jakob B, Splinter J, Durante M and Taucher-Scholz G 2009 Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl. Acad. Sci. USA 106 3172–3177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakob B, Splinter J, Conrad S, Voss K-O, Zink D, Durante M, Löbrich M and Taucher-Scholz G 2011 DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39 6489–6499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang GL 2012 Particle therapy for cancers: a new weapon in radiation therapy. Front. Med. 6 165–172

    Article  PubMed  Google Scholar 

  • Khodjakov A, Cole RW, McEwen BF, Buttle KF and Rieder CL 1997a Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol. 136 229–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khodjakov A, Cole RW and Rieder CL 1997b A surgery of technologies: combining laser microsurgery with green fluorescent protein tagging. Cell Motil. Cytoskeleton. 38 311–317

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Heale JT, Zeng W, Kong X, Krasieva TB, Ball AR Jr and Yokomori K 2007 In situ analysis of DNA damage response and repair using laser microirradiation. Methods Cell Biol. 82 377–407

    Article  CAS  PubMed  Google Scholar 

  • Kreipl MS, Friedland W and Paretzgke HG 2009 Interaction of ion tracks in spatial and temporal proximity. Radiat. Environ. Biophys. 48 349–359

    Article  PubMed  Google Scholar 

  • Lai HH, Quinto-Su PA, Sims CE, Bachman M, Li GP, Venugopalan V and Allbritton NL 2008 Characterization and use of laser-based lysis for cell analysis on-chip. J. R. Soc. Interface. 5 S113–S121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laissue JA, Blattmann H, Di Michiel M, Slatikin DN, Lyubimove N and Guzman R 2001 The weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology. Penetrating Radiat. Syst. Appl. 4508 65–73

    Google Scholar 

  • Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, Wilson SH and Yasui A 2004 In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. USA 101 13738–13743

  • Li HN, Sims CE, Wu HY and Allbritton SL 2001 Spatial control of cellular measurements with the laser micropipette. Anal. Chem. 73 4625–4631

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Do T, Kasravi S, Aurasteh P, Nguyen A, Huang A, Wang Z and Berns MW 2000 Chromosomes are target sites for photodynamic therapy as demonstrated by subcellular laser microirradiation. J. Photochem. Photobiol. B Biol. 54 175–184

    Article  CAS  Google Scholar 

  • Limoli CL and Ward JF 1993 A new method for introducing double strand breaks into cellular DNA. Radiat. Res. 134 160–169

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Pasquali E, Giardullo P, Leonardi S, Tanori M, Di Majo V, Pazzaglia S and Saran A 2012 The radiation bystander effect and its potential implications for human health. Curr. Mol. Med. 12 613–624

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Tomita M, Otsuka K and Hatashita M 2009 A new paradigm in radioadaptive response developing from microbeam research. J. Radiat. Res. 50 A67–A79

    Article  CAS  PubMed  Google Scholar 

  • Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame JC, et al. 2003 Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22 2255–2263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortusewicz O, Schermelleh L, Walter J, Cardoso MC and Leonhardt H 2005 Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl. Acad. Sci. USA 102 8905–8909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortusewicz O, Rothbauer U, Cardoso MC and Leonhardt H 2006 Differential recruitment of DNA ligase I and III to DNA repair sites. Nucleic Acids Res. 34 3523–3532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortusewicz O, Amé JC, Schreiber V and Leonhardt H 2007 Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35 7665–7675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagasawa H and Little JB 1992 Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res. 52 6394–6396

    CAS  PubMed  Google Scholar 

  • Nagy Z and Soutoglou E 2009 DNA repair: easy to visualize, difficult to elucidate. Trends Cell Biol. 19 617–629

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Lan L, Kanno SI, Usami N, Kobayashi K, Mori M, Shiomi T and Yasui A 2006 Replication-dependent and –independent responses of RAD18 to DNA damage in human cells. J. Biol. Chem. 281 34687–34695

    Article  CAS  PubMed  Google Scholar 

  • Negishi T, Kawai K, Arakawa R, Higashi S, Nakamura T, Watanabe M, Kasai H and Fujikawa K 2007 Increased levels of 8-hydroxy-2’-deoxyguanosine in Drosophila larval DNA after irradiation with 364-nm laser light but not with X-rays. Photochem. Photobiol. 83 658–663

    Article  CAS  PubMed  Google Scholar 

  • Noack J, Hammer DX, Noojin GD, Rockwell BA and Vogel A 1998 Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 83 7488–7495

    Article  CAS  Google Scholar 

  • Prise KM, Schettino G, Vojnovic B, Belyakov O and Shao C 2009 Microbeam studies of the bystander response. J. Radiat. Res. 50 A1–A6

    Article  PubMed Central  PubMed  Google Scholar 

  • Priyadarshika RC, Crosbie JC, Kumar B and Rogers PA 2011 Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatological scoring system. J. Br. Radiol. 84 833–842

    Article  CAS  Google Scholar 

  • Quinto-Su PA, Lai HH, Yoon HH, Sims CE, Allbritton NL and Venugopalan V 2008 Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip. 8 408–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rastogi S, Coates PJ, Lorimore SA and Wright EG 2012 Bystander-type effects mediated by long lived inflammatory signalling in irradiated bone marrow. Radiat. Res. 177 244–250

    Article  CAS  PubMed  Google Scholar 

  • Rau KR, Quinto-Su PA, Hellman AN and Venugopalan V 2006 Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91 317–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds P, Anderson JA, Harper JV, Hill MA, Botchway SW, Parker AW and O’Neil P 2012 The dynamics of Ku70/ku80 and DNA-PKcs at DSBs induced by ionizing radation is dependent on the complexity of damage. Nucl. Acids Res. 40 10821–10831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K and Delattre JY 2012 Primary brain tumors in adults. Lancet 379 1984–1996

    Article  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C and Bonner WM 1999 Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146 905–916

  • Sabatasso S, Laissue JA, Hlushchuk R, Graber W, Bravin A, Bräuer-Krisch E, Corde S, Blattmann H, et al. 2011 Microbeam radiation-induced tissue damage depends on the stage of vascular maturation. Int. J. Radiat. Oncol. Biol. Phys. 80 1522–1532

    Article  PubMed  Google Scholar 

  • Schettino G, Ghita M, Richard DJ and Prise KM 2011 Spatiotemporal investigations of DNA damage repair using microbeams. Radiat. Prot. Dosim. 143 340–343

    Article  CAS  Google Scholar 

  • Schindler M 1998 Select, microdissect and eject. Nat. Biotechnol. 16 719–720

    Article  CAS  PubMed  Google Scholar 

  • Schmid TE, Dollinger G, Hauptner A, Hable V, Greubel C, Auer S, Friedl AA, Molls M, et al. 2009 No evidence for a different RBE between pulsed and continuous 20 MeV Protons. Radiat. Res. 172 567–574

    Article  CAS  PubMed  Google Scholar 

  • Schmid TE, Dollinger G, Hable V, Greubel C, Zlobinskaya O, Michalski D, Molls M and Röper B 2010 Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiother. Oncol. 95 66–72

    Article  CAS  PubMed  Google Scholar 

  • Seiler DM, Rouquette J, Schmid VJ, Strickfaden H, Ottmann C, Drexler GA, Mazrek B, Greubel C, et al. 2011 Double-Strand break induced transcriptional silencing is associated with loss of tri-methylation at H3K4. Chromosom. Res. 19 883–899

    Article  CAS  Google Scholar 

  • Shao C, Folkard M, Michael BD and Prise KM 2004 Targeted cytoplasmatic irradiation induces bystander response. Proc. Natl. Acad. Sci. USA 101 13495–13500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shim SH, Kyhm JH, Chung SR, Kim SR, Park MI, Lee CH and Cho YH 2007 Generation of FISH probes using laser microbeammicrodissection and application to clinical molecular cytogenetics. J. Microbiol. Biotechnol. 17 1079–1082

    CAS  PubMed  Google Scholar 

  • Shimo A, Tanikawa C, Nishidate T, Lin ML, Matsuda K, Park JH, Ueki T, Ohta T, et al. 2008 Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci. 99 62–70

    CAS  PubMed  Google Scholar 

  • Siebenwirth C, Greubel C, Drexler SE, Girst S, Reindl J, Walsh D, Dollinger G, Friedl AA, et al. 2015 Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE. Nucl. Inst. Methods Phys. Res. B. 348 137–142

    Article  CAS  Google Scholar 

  • Singh H, Saroya R, Smith R, Mantha R, Guindon L, Mitchel RE, Seymour C and Mothersill C 2011 Radiation induced bystander effects in mice given low doses of radiation in vivo. Dose Response 9 225–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Splinter J, Jakob B, Lang M, Yano K, Engelhardt J, Hell SW, Chen DJ, Durante M, et al. 2010 Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci. Mutagenesis. 25 289–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stark RW, Rubio-Sierra FJ, Thalhammer S and Heckl WM 2003 Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection. Eur. Biophys. J. 32 33–39

    PubMed  Google Scholar 

  • Suzuki K, Yamauchi M, Oka Y, Suzuki M and Yamashita S 2011 Creating localized DNA double-strand breaks with microirradiation. Nat. Protoc. 6 134–139

    Article  CAS  PubMed  Google Scholar 

  • Tamminga J and Kovalchuk O 2011 Role of DNA damage and epigenetic DNA methylation changes in radiation-induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 4 115–125

    Article  CAS  PubMed  Google Scholar 

  • Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M and Price KM 2007 Cytoplasmatic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res. 67 5872–5879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tjeertes JV, Miller KM and Jackson SP 2009 Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28 1878–1889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomita M, Maeda M, Kobayashi K and Matsumoto H 2013 Dose Response of soft x-ray-induced bystander cell killing affected by p53 status. Radiat. Res. 179 200–207

    Article  CAS  PubMed  Google Scholar 

  • Van der Sanden B, Bräuer-Krisch E, Siegbahn EA, Ricard C, Vail JC and Laissue J 2010 Tolerance of arteries to microplanar x-ray beams. Int. J. Radiat. Oncol. Biol. Phys. 77 1545–1552

    Article  PubMed  Google Scholar 

  • Van Dijk MCRF, Rombout PDM, Dijkman HBPM, Ruiter DJ and Bernsen MR 2003 Improved resolution by mounting of tissue sections for laser microdissection. Mol. Pathol. 56 240–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Oven C, Krawczeyk PM, Stap J, Melo AM, Piazette MHO, Gobbi AL, van Veen HA, Verhoven J, et al. 2009 An ultrasoft x-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed and live-cell fluorescence microscopy. Eur. Biophys. J. 38 721–728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Venugopalan V, Guerra A, Nahen K and Vogel A 2002 Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys. Rev. Lett. 88 078103

    Article  PubMed  CAS  Google Scholar 

  • Vogel A and Venugopalan V 2003 Mechanisms of pulsed laser ablation of biological tissue. Chem. Rev. 103 577–644

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Noack J, Hüttman G and Paltauf G 2005 Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B. 81 1015–1047

    Article  CAS  Google Scholar 

  • Walter J, Cremer T, Miyagawa K and Tashiro S 2003 A new system for laser-UVA-microirradiation of living cells. J. Microsc. 209 71–75

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K and Wagner EF 1997 PARP is important for genome stability but dispensable in apoptosis. Genes Dev. 11 2347–2358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamagata K, Iwamoto D, Terashita Y, Li C, Wakayama S, Hayashi-Takanaka Y, Kimura H, Saeki K, et al. 2012 Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy. PLoS One 7, e31638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Ivanov VN, Lien YC, Davidson M and Hei TK 2008 Mitochondrial function and nuclear factor-kappa-B mediated signalling in radiation induced-bystander effects. Cancer Res. 68 2233–2240

  • Zhou H, Hong M, Chai Y and Hei TK 2009 Consequences of cytoplasmatic irradiation: studies from Microbeam. J. Radiat. Res. 50 A59–A65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zirkle RE and Bloom W 1953 Irradiation of parts of individual cells. Science 11 7487–493

    Google Scholar 

  • Zlobinskaya O, Girst S, Greubel C, Hable V, Siebenwirth C, Walsh DW, Multhoff G, Wilkens JJ, et al. 2013 Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat. Environ. Biophys. 52 123–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Steven J Smith for carefully reading the manuscript. GAD acknowledges the financial support of the DFG Cluster of Excellence: Munich-Centre for Advanced Photonics (MAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido A Drexler.

Additional information

Corresponding editor: Veena K Parnaik

[Drexler GA and Ruiz-Gómez MJ 2015 Microirradiation techniques in radiobiological research. J. Biosci.] DOI 10.1007/s12038-015-9535-3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drexler, G.A., Ruiz-Gómez, M.J. Microirradiation techniques in radiobiological research. J Biosci 40, 629–643 (2015). https://doi.org/10.1007/s12038-015-9535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9535-3

Keywords

Navigation