Skip to main content
Log in

Microirradiation of cells with energetic heavy ions

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The ion microprobe SNAKE at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, from 20 MeV protons to 200 MeV gold ions. Because of these properties, SNAKE is particularly attractive for biological microbeam experiments. Here we describe the adaptation of SNAKE for microirradiation of cell samples. This includes enlarging of the focal distance in order to adjust the focal plane to the specimen stage of a microscope, construction of a beam exit window in a flexible nozzle and of a suitable cell containment, as well as development of procedures for on-line focussing of the beam, preparation of single ions and scanning by electrostatic deflection of the beam. When irradiating with single 100 MeV 16O ions, the adapted set-up permits an irradiation accuracy of 0.91 µm (full width at half maximum) in the x-direction and 1.60 µm in the y-direction, as demonstrated by retrospective track etching of polycarbonate foils. Accumulation of the repair protein Rad51, as detected by immunofluorescence, was used as a biological track detector after irradiation of HeLa cells with geometric patterns of counted ions. Observed patterns of fluorescence foci agreed reasonably well with irradiation patterns, indicating successful adaptation of SNAKE. In spite of single ion irradiation, we frequently observed split fluorescence foci which might be explained by small-scale chromatin movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brenner DJ, Hall EJ (2002) Microbeams: a potent mix of physics and biology. Summary of the 5th International Workshop on Microbeam Probes of Cellular Radiation Response. Radiat Prot Dosim 99:283–286

    CAS  Google Scholar 

  2. Prise KM, Belyakov OV, Folkard M, Ozols A, Schettino G, Vojnovic B, Michael BD (2002) Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Adv Space Res 30:871–876

    Article  CAS  PubMed  Google Scholar 

  3. Prise KM, Folkard M, Michael BD (2003) A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosim 104:347–355

    CAS  Google Scholar 

  4. Folkard M, Prise KM, Vojnovic B, Gilchrist S, Schettino G, Belyakov OV, Ozols A, Michael BD (2001)The impact of microbeams in radiation biology. Nucl Instrum Methods Phys Res B 181:426–430

    Article  CAS  Google Scholar 

  5. Datzmann G, Dollinger G, Goeden C, Hauptner A, Körner HJ, Reichart P, Schmelmer O (2001) The Munich microprobe SNAKE: first results using 20 MeV protons and 90 MeV sulfur ions. Nucl Instrum Methods Phys Res B 181:20–26

    Article  CAS  Google Scholar 

  6. Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner HJ, Reichart P, Volckaerts B (2003) The Munich ion microprobe: characteristics and prospect. Nucl Instrum Methods Phys Res B 210:6–13

    Article  CAS  Google Scholar 

  7. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP, a mediator of the DNA damage checkpoint. Science 298:1435–1438

    Article  CAS  PubMed  Google Scholar 

  9. Modesti M, Kanaar R (2001) Homologous recombination: from model organisms to human disease. Genome Biol 2:reviews1014.1–1014.5

    Article  CAS  PubMed  Google Scholar 

  10. Haaf T, Golub EI, Reddy G, Radding CM, Ward DC (1995) Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A 92:2298–2302

    CAS  PubMed  Google Scholar 

  11. Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    CAS  PubMed  Google Scholar 

  12. Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A 96:1921–1926

    Article  CAS  PubMed  Google Scholar 

  13. Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150:283–291

    Article  CAS  PubMed  Google Scholar 

  14. Tartier L, Spenlehauer C, Newman HC, Folkard M, Prise KM, Michael BD, Menissier-de Murcia J, Mucria G de (2003) Local DNA damage by proton microbeam irradiations induces poly(ADP-ribose) synthesis in mammalian cells. Mutagenesis 18:411–416

    Article  CAS  PubMed  Google Scholar 

  15. Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A (1998) XRCC3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 273:21482–21488

    Article  CAS  PubMed  Google Scholar 

  16. Tashiro S, Kotomura N, Shinohara A, Tanaka K, Ueda K, Kamada N (1996) S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene 12:2165–2170

    CAS  PubMed  Google Scholar 

  17. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, vol. 1. Pergamon, New York

  18. Friedl AA, Kraxenberger A, Eckardt-Schupp F (1995) An electrophoretic approach to the assessment of the spatial distribution of DNA double-strand breaks in mammalian cells. Electrophoresis 16:1865–1874

    CAS  PubMed  Google Scholar 

  19. Kraxenberger F, Weber KJ, Friedl AA, Eckardt-Schupp F, Flentje M, Quicken P, Kellerer AM (1998) DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis. Radiat Environ Biophys 37:107–115

    Article  CAS  PubMed  Google Scholar 

  20. Prise KM, Pinto M, Newman HC, Michael BD (2001) A review of studies of ionizing radiation-induced double-strand break clustering. Radiat Res 156:572–576

    CAS  PubMed  Google Scholar 

  21. Brons S, Taucher-Scholz G, Scholz M, Kraft G (2003) A track structure model for simulation of strand breaks in plasmid DNA after heavy ion irradiation. Radiat Environ Biophys 42:63–72

    CAS  PubMed  Google Scholar 

  22. Chen J, Kellerer AM, Rossi HH (1994) Radially restricted linear energy transfer for high-energy protons: a new analytical approach. Radiat Environ Biophys 33:181–187

    CAS  PubMed  Google Scholar 

  23. Krämer M, Kraft G (1994) Calculations of heavy-ion structure. Radiat Environ Biophys 33:91–109

    PubMed  Google Scholar 

  24. Reichart P, Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner HJ (2003) Sensitive 3D hydrogen microscopy using high energy protons at SNAKE. Nucl Instrum Methods Phys Res B 210:135–141

    Article  CAS  Google Scholar 

  25. Hinderer G, Dollinger G, Datzmann G, Körner HJ (1997) Design of the new superconducting microprobe system in Munich. Nucl Instrum Methods Phys Res B 130:51–56

    Article  CAS  Google Scholar 

  26. Schmelmer O, Dollinger G, Datzmann G, Goeden C, Körner HJ (1999) A novel high precision slit system. Nucl Instrum Methods Phys Res B 158:107–112

    Article  CAS  Google Scholar 

  27. Datzmann G, Dollinger G, Hinderer G, Körner HJ (1999) The superconducting multipole lens for focusing high energy ions. Nucl Instrum Methods Phys Res B 158:74–80

    Article  CAS  Google Scholar 

  28. Jakob B, Scholz M, Taucher-Scholz G (2003) Biological imaging of heavy charged-particle tracks. Radiat Res 159:676–684

    CAS  PubMed  Google Scholar 

  29. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5:572–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The contributions of A.A. Friedl and G. Dollinger are considered equal. This work has been supported by Maier Leibnitz Laboratorium of the TU Munich and the University of Munich. We thank the technical staff of the Munich tandem accelerator, and Christine Trautmann for providing the nuclear track detectors. We also thank Friederike Eckardt-Schupp, Volker Hable, Robert Mayer and Hartmut Roos for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dollinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauptner, A., Dietzel, S., Drexler, G.A. et al. Microirradiation of cells with energetic heavy ions. Radiat Environ Biophys 42, 237–245 (2004). https://doi.org/10.1007/s00411-003-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-003-0222-7

Keywords

Navigation